利用时间序列模型拟合方法,针对稀疏和不规则观测数据合成中国沿海地区的大地遥感卫星图像

IF 6 2区 地球科学 Q1 GEOGRAPHY, PHYSICAL
Chao Sun, Jialin Li, Yongchao Liu, Tingting Pan, Ke Shi, Xinyao Cai
{"title":"利用时间序列模型拟合方法,针对稀疏和不规则观测数据合成中国沿海地区的大地遥感卫星图像","authors":"Chao Sun, Jialin Li, Yongchao Liu, Tingting Pan, Ke Shi, Xinyao Cai","doi":"10.1080/15481603.2024.2421574","DOIUrl":null,"url":null,"abstract":"Long historical records and free accessibility have made Landsat data valuable for time-series analysis. However, Landsat time-series analysis is restricted for coastal areas due to the lack of suf...","PeriodicalId":55091,"journal":{"name":"GIScience & Remote Sensing","volume":"237 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesizing Landsat images using time series model-fitting methods for China’s coastal areas against sparse and irregular observations\",\"authors\":\"Chao Sun, Jialin Li, Yongchao Liu, Tingting Pan, Ke Shi, Xinyao Cai\",\"doi\":\"10.1080/15481603.2024.2421574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Long historical records and free accessibility have made Landsat data valuable for time-series analysis. However, Landsat time-series analysis is restricted for coastal areas due to the lack of suf...\",\"PeriodicalId\":55091,\"journal\":{\"name\":\"GIScience & Remote Sensing\",\"volume\":\"237 1\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GIScience & Remote Sensing\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/15481603.2024.2421574\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GIScience & Remote Sensing","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/15481603.2024.2421574","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

悠久的历史记录和免费获取使大地遥感卫星数据成为时间序列分析的重要依据。然而,由于缺乏足够的时间序列数据,Landsat 时间序列分析在沿海地区受到限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthesizing Landsat images using time series model-fitting methods for China’s coastal areas against sparse and irregular observations
Long historical records and free accessibility have made Landsat data valuable for time-series analysis. However, Landsat time-series analysis is restricted for coastal areas due to the lack of suf...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.20
自引率
9.00%
发文量
84
审稿时长
6 months
期刊介绍: GIScience & Remote Sensing publishes original, peer-reviewed articles associated with geographic information systems (GIS), remote sensing of the environment (including digital image processing), geocomputation, spatial data mining, and geographic environmental modelling. Papers reflecting both basic and applied research are published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信