Sagar Jathar , Sanath Kumar Honnali , Alireza Farhadizadeh , Arnaud le Febvrier , Magnus Odén , Per Eklund
{"title":"共晶铬涂层中氮和铌的掺入对微观结构和机械性能的影响","authors":"Sagar Jathar , Sanath Kumar Honnali , Alireza Farhadizadeh , Arnaud le Febvrier , Magnus Odén , Per Eklund","doi":"10.1016/j.surfcoat.2024.131489","DOIUrl":null,"url":null,"abstract":"<div><div>Stoichiometric CrN and Cr:N with different nitrogen (N) content are of interest for hard coating applications. In the Cr-N material system, bcc-Cr rich coatings, containing a few percent of diluted N, provide tunability in microstructure and mechanical properties. Additionally, the incorporation of Nb into the CrN<sub>x</sub> coatings may further tailor the materials properties. In this work, bcc-CrN<sub>x</sub> and CrNbN<sub>x</sub> coatings were deposited by reactive magnetron sputtering, and their mechanical and microstructural characteristics were investigated as a function of N content. Depending on the N content, the phases observed by X-ray diffractometry (XRD) varied from metallic bcc-Cr, mixed bcc-Cr/h-Cr<sub>2</sub>N, to h-Cr<sub>2</sub>N/CrN. X-ray reflectivity (XRR), and scanning electron microscopy (SEM) measurements show that a dense and nearly columnar-free bcc-CrN<sub>x</sub> coatings was obtained at ~13–25 at.% of N, while CrNbN<sub>x</sub> coatings composed of dense, column-free, and featureless microstructure at a N content of ~10–20 at.%. The dense and nearly column-free microstructure composed of dispersion of Cr<sub>2</sub>N grains into the bcc-Cr matrix for both CrN<sub>x</sub> and CrNbN<sub>x</sub> coatings, as shown by high resolution transmission electron microscope analysis (HRTEM). Nanoindentation revealed a hardening of the coatings due to the grain refinement, solid solution strengthening, and variation in phase content.</div></div>","PeriodicalId":22009,"journal":{"name":"Surface & Coatings Technology","volume":"494 ","pages":"Article 131489"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of nitrogen and niobium incorporation in bcc-chromium coatings on microstructure and mechanical properties\",\"authors\":\"Sagar Jathar , Sanath Kumar Honnali , Alireza Farhadizadeh , Arnaud le Febvrier , Magnus Odén , Per Eklund\",\"doi\":\"10.1016/j.surfcoat.2024.131489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Stoichiometric CrN and Cr:N with different nitrogen (N) content are of interest for hard coating applications. In the Cr-N material system, bcc-Cr rich coatings, containing a few percent of diluted N, provide tunability in microstructure and mechanical properties. Additionally, the incorporation of Nb into the CrN<sub>x</sub> coatings may further tailor the materials properties. In this work, bcc-CrN<sub>x</sub> and CrNbN<sub>x</sub> coatings were deposited by reactive magnetron sputtering, and their mechanical and microstructural characteristics were investigated as a function of N content. Depending on the N content, the phases observed by X-ray diffractometry (XRD) varied from metallic bcc-Cr, mixed bcc-Cr/h-Cr<sub>2</sub>N, to h-Cr<sub>2</sub>N/CrN. X-ray reflectivity (XRR), and scanning electron microscopy (SEM) measurements show that a dense and nearly columnar-free bcc-CrN<sub>x</sub> coatings was obtained at ~13–25 at.% of N, while CrNbN<sub>x</sub> coatings composed of dense, column-free, and featureless microstructure at a N content of ~10–20 at.%. The dense and nearly column-free microstructure composed of dispersion of Cr<sub>2</sub>N grains into the bcc-Cr matrix for both CrN<sub>x</sub> and CrNbN<sub>x</sub> coatings, as shown by high resolution transmission electron microscope analysis (HRTEM). Nanoindentation revealed a hardening of the coatings due to the grain refinement, solid solution strengthening, and variation in phase content.</div></div>\",\"PeriodicalId\":22009,\"journal\":{\"name\":\"Surface & Coatings Technology\",\"volume\":\"494 \",\"pages\":\"Article 131489\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface & Coatings Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0257897224011204\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface & Coatings Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0257897224011204","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
Influence of nitrogen and niobium incorporation in bcc-chromium coatings on microstructure and mechanical properties
Stoichiometric CrN and Cr:N with different nitrogen (N) content are of interest for hard coating applications. In the Cr-N material system, bcc-Cr rich coatings, containing a few percent of diluted N, provide tunability in microstructure and mechanical properties. Additionally, the incorporation of Nb into the CrNx coatings may further tailor the materials properties. In this work, bcc-CrNx and CrNbNx coatings were deposited by reactive magnetron sputtering, and their mechanical and microstructural characteristics were investigated as a function of N content. Depending on the N content, the phases observed by X-ray diffractometry (XRD) varied from metallic bcc-Cr, mixed bcc-Cr/h-Cr2N, to h-Cr2N/CrN. X-ray reflectivity (XRR), and scanning electron microscopy (SEM) measurements show that a dense and nearly columnar-free bcc-CrNx coatings was obtained at ~13–25 at.% of N, while CrNbNx coatings composed of dense, column-free, and featureless microstructure at a N content of ~10–20 at.%. The dense and nearly column-free microstructure composed of dispersion of Cr2N grains into the bcc-Cr matrix for both CrNx and CrNbNx coatings, as shown by high resolution transmission electron microscope analysis (HRTEM). Nanoindentation revealed a hardening of the coatings due to the grain refinement, solid solution strengthening, and variation in phase content.
期刊介绍:
Surface and Coatings Technology is an international archival journal publishing scientific papers on significant developments in surface and interface engineering to modify and improve the surface properties of materials for protection in demanding contact conditions or aggressive environments, or for enhanced functional performance. Contributions range from original scientific articles concerned with fundamental and applied aspects of research or direct applications of metallic, inorganic, organic and composite coatings, to invited reviews of current technology in specific areas. Papers submitted to this journal are expected to be in line with the following aspects in processes, and properties/performance:
A. Processes: Physical and chemical vapour deposition techniques, thermal and plasma spraying, surface modification by directed energy techniques such as ion, electron and laser beams, thermo-chemical treatment, wet chemical and electrochemical processes such as plating, sol-gel coating, anodization, plasma electrolytic oxidation, etc., but excluding painting.
B. Properties/performance: friction performance, wear resistance (e.g., abrasion, erosion, fretting, etc), corrosion and oxidation resistance, thermal protection, diffusion resistance, hydrophilicity/hydrophobicity, and properties relevant to smart materials behaviour and enhanced multifunctional performance for environmental, energy and medical applications, but excluding device aspects.