{"title":"增强 K0.67[Ni0.3Mn0.6Co0.1] O2 作为二次钾离子电池阴极材料的电化学性能:改善钾离子插入和降低电荷转移障碍","authors":"Shitanshu Pratap Singh, Anupam Patel, Anurag Tiwari, Samriddhi, Vikas Yadav, Raghvendra Mishra, Rupesh Kumar Tiwari, Rajendra Kumar Singh","doi":"10.1016/j.surfin.2024.105316","DOIUrl":null,"url":null,"abstract":"<div><div>Potassium-ion batteries, with their high operating voltage and cost-efficiency, emerged as promising contenders for large-scale energy storage system. Nevertheless, the practical application is hindered by the significant challenges of achieving high capacity and good rate capability in cathodes. Herein, a novel layered oxide cathode, K<sub>0.67</sub>[Ni<sub>0.3</sub>Mn<sub>0.6</sub>Co<sub>0.1</sub>] O<sub>2</sub> (KNMCO), has been synthesized via solid-state (S-KNMCO) and co-precipitation (C-KNMCO) routes. The X-Ray diffraction (XRD) peaks of KNMCO are identified in R3 m space group and well-indexed to hexagonal unit cell. The FE-SEM shows non-spherical morphologies for both samples. Additionally, high-resolution transmission electron microscopy (HR-TEM) images of the synthesized cathode materials shows the interlayer spacing of S-KNMCO is higher than that of C-KNMCO. Furthermore, the electrochemical performance of S-KNMCO and C-KNMCO is characterized using K-metal as anode and electrolyte KPF<sub>6</sub> in EC/DEC (1:1, v/v). The S-KNMCO and C-KNMCO exhibit the maximum specific discharge capacity of ∼101 mAhg<sup>-1</sup> and ∼66 mAhg<sup>-1</sup> at the current rate of C/20 respectively. Additionally, these cells show the good rate capability and coulombic efficiency (∼94%). This research offers novel perspectives on the development of cathode substances for KIBs.</div></div>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced electrochemical performance of K0.67[Ni0.3Mn0.6Co0.1] O2 as a cathode material for secondary K-Ion batteries: Improved K-Ion insertion and reduced charge transfer barrier\",\"authors\":\"Shitanshu Pratap Singh, Anupam Patel, Anurag Tiwari, Samriddhi, Vikas Yadav, Raghvendra Mishra, Rupesh Kumar Tiwari, Rajendra Kumar Singh\",\"doi\":\"10.1016/j.surfin.2024.105316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Potassium-ion batteries, with their high operating voltage and cost-efficiency, emerged as promising contenders for large-scale energy storage system. Nevertheless, the practical application is hindered by the significant challenges of achieving high capacity and good rate capability in cathodes. Herein, a novel layered oxide cathode, K<sub>0.67</sub>[Ni<sub>0.3</sub>Mn<sub>0.6</sub>Co<sub>0.1</sub>] O<sub>2</sub> (KNMCO), has been synthesized via solid-state (S-KNMCO) and co-precipitation (C-KNMCO) routes. The X-Ray diffraction (XRD) peaks of KNMCO are identified in R3 m space group and well-indexed to hexagonal unit cell. The FE-SEM shows non-spherical morphologies for both samples. Additionally, high-resolution transmission electron microscopy (HR-TEM) images of the synthesized cathode materials shows the interlayer spacing of S-KNMCO is higher than that of C-KNMCO. Furthermore, the electrochemical performance of S-KNMCO and C-KNMCO is characterized using K-metal as anode and electrolyte KPF<sub>6</sub> in EC/DEC (1:1, v/v). The S-KNMCO and C-KNMCO exhibit the maximum specific discharge capacity of ∼101 mAhg<sup>-1</sup> and ∼66 mAhg<sup>-1</sup> at the current rate of C/20 respectively. Additionally, these cells show the good rate capability and coulombic efficiency (∼94%). This research offers novel perspectives on the development of cathode substances for KIBs.</div></div>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S246802302401472X\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S246802302401472X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Enhanced electrochemical performance of K0.67[Ni0.3Mn0.6Co0.1] O2 as a cathode material for secondary K-Ion batteries: Improved K-Ion insertion and reduced charge transfer barrier
Potassium-ion batteries, with their high operating voltage and cost-efficiency, emerged as promising contenders for large-scale energy storage system. Nevertheless, the practical application is hindered by the significant challenges of achieving high capacity and good rate capability in cathodes. Herein, a novel layered oxide cathode, K0.67[Ni0.3Mn0.6Co0.1] O2 (KNMCO), has been synthesized via solid-state (S-KNMCO) and co-precipitation (C-KNMCO) routes. The X-Ray diffraction (XRD) peaks of KNMCO are identified in R3 m space group and well-indexed to hexagonal unit cell. The FE-SEM shows non-spherical morphologies for both samples. Additionally, high-resolution transmission electron microscopy (HR-TEM) images of the synthesized cathode materials shows the interlayer spacing of S-KNMCO is higher than that of C-KNMCO. Furthermore, the electrochemical performance of S-KNMCO and C-KNMCO is characterized using K-metal as anode and electrolyte KPF6 in EC/DEC (1:1, v/v). The S-KNMCO and C-KNMCO exhibit the maximum specific discharge capacity of ∼101 mAhg-1 and ∼66 mAhg-1 at the current rate of C/20 respectively. Additionally, these cells show the good rate capability and coulombic efficiency (∼94%). This research offers novel perspectives on the development of cathode substances for KIBs.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.