Zekun Tao , Qinggang Zhang , Qian Xie , Hongen Qu , Yulong Liu , Lingfang Kong , Guohai Xu , Shiyong Zhang , Zhonggao Zhou
{"title":"提高π-π相互作用稳定的 PdNPs 在水介导的芳基氯化物铃木偶联反应中的催化活性","authors":"Zekun Tao , Qinggang Zhang , Qian Xie , Hongen Qu , Yulong Liu , Lingfang Kong , Guohai Xu , Shiyong Zhang , Zhonggao Zhou","doi":"10.1016/j.surfin.2024.105313","DOIUrl":null,"url":null,"abstract":"<div><div>Utilizing unique interactions to enhance the catalytic performance of supported metal catalysts is a crucial strategy in catalyst design, albeit one that presents a significant challenge. This study introduces an original approach involving the use of π-π interactions to stabilize palladium nanoparticles (PdNPs) with a 2Br-substituted imidazolium-based covalent organic framework (COF, IHP-Br-PdNPs) for efficient water-mediated Suzuki reactions involving deactivated aryl chlorides and arylboronic acids at ambient conditions. Through extensive structural characterization employing techniques including Fourier transform infrared spectroscopy (FT-IR), cross-polarization magic angle spinning carbon-13 nuclear magnetic resonance (CP/MAS <sup>13</sup>C NMR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), N<sub>2</sub> adsorption, and X-ray photoelectron spectroscopy (XPS), we demonstrate the immobilization of highly stable and well-dispersed PdNPs was obtained. The designed IHP-Br-PdNPs demonstrate stability for up to 36 months in ambient air and can be efficiently recycled. After 9 catalytic cycles, there was no significant decline in catalytic performance, and the particle size of PdNPs remained constant at approximately 4–8 nm throughout the reactions. The coordination mode between the stabilizer and metal, specifically the π-π interaction between the 2Br-substituted imidazolium moiety and the Pd metal surface, plays a key role in stabilizing various active species and facilitating distinct catalytic pathways. This study provides valuable insights into the development of π-π interactions supported metal catalysts, which enhance stability and catalytic activity in advanced water-mediated synthesis applications.</div></div>","PeriodicalId":22081,"journal":{"name":"Surfaces and Interfaces","volume":"55 ","pages":"Article 105313"},"PeriodicalIF":5.7000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boosting catalytic activity of π-π interactions-stabilized PdNPs for water-mediated Suzuki couplings of aryl chlorides\",\"authors\":\"Zekun Tao , Qinggang Zhang , Qian Xie , Hongen Qu , Yulong Liu , Lingfang Kong , Guohai Xu , Shiyong Zhang , Zhonggao Zhou\",\"doi\":\"10.1016/j.surfin.2024.105313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Utilizing unique interactions to enhance the catalytic performance of supported metal catalysts is a crucial strategy in catalyst design, albeit one that presents a significant challenge. This study introduces an original approach involving the use of π-π interactions to stabilize palladium nanoparticles (PdNPs) with a 2Br-substituted imidazolium-based covalent organic framework (COF, IHP-Br-PdNPs) for efficient water-mediated Suzuki reactions involving deactivated aryl chlorides and arylboronic acids at ambient conditions. Through extensive structural characterization employing techniques including Fourier transform infrared spectroscopy (FT-IR), cross-polarization magic angle spinning carbon-13 nuclear magnetic resonance (CP/MAS <sup>13</sup>C NMR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), N<sub>2</sub> adsorption, and X-ray photoelectron spectroscopy (XPS), we demonstrate the immobilization of highly stable and well-dispersed PdNPs was obtained. The designed IHP-Br-PdNPs demonstrate stability for up to 36 months in ambient air and can be efficiently recycled. After 9 catalytic cycles, there was no significant decline in catalytic performance, and the particle size of PdNPs remained constant at approximately 4–8 nm throughout the reactions. The coordination mode between the stabilizer and metal, specifically the π-π interaction between the 2Br-substituted imidazolium moiety and the Pd metal surface, plays a key role in stabilizing various active species and facilitating distinct catalytic pathways. This study provides valuable insights into the development of π-π interactions supported metal catalysts, which enhance stability and catalytic activity in advanced water-mediated synthesis applications.</div></div>\",\"PeriodicalId\":22081,\"journal\":{\"name\":\"Surfaces and Interfaces\",\"volume\":\"55 \",\"pages\":\"Article 105313\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surfaces and Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S246802302401469X\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surfaces and Interfaces","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S246802302401469X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Boosting catalytic activity of π-π interactions-stabilized PdNPs for water-mediated Suzuki couplings of aryl chlorides
Utilizing unique interactions to enhance the catalytic performance of supported metal catalysts is a crucial strategy in catalyst design, albeit one that presents a significant challenge. This study introduces an original approach involving the use of π-π interactions to stabilize palladium nanoparticles (PdNPs) with a 2Br-substituted imidazolium-based covalent organic framework (COF, IHP-Br-PdNPs) for efficient water-mediated Suzuki reactions involving deactivated aryl chlorides and arylboronic acids at ambient conditions. Through extensive structural characterization employing techniques including Fourier transform infrared spectroscopy (FT-IR), cross-polarization magic angle spinning carbon-13 nuclear magnetic resonance (CP/MAS 13C NMR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), N2 adsorption, and X-ray photoelectron spectroscopy (XPS), we demonstrate the immobilization of highly stable and well-dispersed PdNPs was obtained. The designed IHP-Br-PdNPs demonstrate stability for up to 36 months in ambient air and can be efficiently recycled. After 9 catalytic cycles, there was no significant decline in catalytic performance, and the particle size of PdNPs remained constant at approximately 4–8 nm throughout the reactions. The coordination mode between the stabilizer and metal, specifically the π-π interaction between the 2Br-substituted imidazolium moiety and the Pd metal surface, plays a key role in stabilizing various active species and facilitating distinct catalytic pathways. This study provides valuable insights into the development of π-π interactions supported metal catalysts, which enhance stability and catalytic activity in advanced water-mediated synthesis applications.
期刊介绍:
The aim of the journal is to provide a respectful outlet for ''sound science'' papers in all research areas on surfaces and interfaces. We define sound science papers as papers that describe new and well-executed research, but that do not necessarily provide brand new insights or are merely a description of research results.
Surfaces and Interfaces publishes research papers in all fields of surface science which may not always find the right home on first submission to our Elsevier sister journals (Applied Surface, Surface and Coatings Technology, Thin Solid Films)