Daria Robertson, Paula Nousiainen, Leena Pitkänen, Inge Schlapp-Hackl, Dmitrii Rusakov, Michael Hummel
{"title":"在共晶盐混合物存在下对木质素进行碳化:确定影响碳材料特性的木质素特性","authors":"Daria Robertson, Paula Nousiainen, Leena Pitkänen, Inge Schlapp-Hackl, Dmitrii Rusakov, Michael Hummel","doi":"10.1016/j.jaap.2024.106811","DOIUrl":null,"url":null,"abstract":"<div><div>Numerous studies have explored the behaviour of various lignin types during carbonisation. Yet, misconceptions persist regarding the effects arising from both the source plant and production method of lignin. Lignin is often referenced merely by type, lacking detailed characterisation. Our research examines the properties of three lignin types, elucidates their behaviour during pyrolysis, and establishes the structure-property correlation and interaction of lignin with deep eutectic solvents. By combining several analytical techniques — including NMR, FTIR, XPS, TGA-MS for functional group detection, and HPLC, EA, and ICP for compositional analysis, alongside particle size distribution and SEC for morphology — we can conduct a thorough analysis that facilitates a meaningful comparison across lignin types. This approach allows for better control over the desired carbon properties. Furthermore, we demonstrate how modification with deep eutectic solvents enables the production of biochar from different lignin types, exhibiting properties conducive to large-scale, one-step sustainable production of biochar.</div></div>","PeriodicalId":345,"journal":{"name":"Journal of Analytical and Applied Pyrolysis","volume":"183 ","pages":"Article 106811"},"PeriodicalIF":5.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carbonisation of lignin in the presence of a eutectic salt mixture: Identifying the lignin properties that govern the characteristics of the resulting carbon material\",\"authors\":\"Daria Robertson, Paula Nousiainen, Leena Pitkänen, Inge Schlapp-Hackl, Dmitrii Rusakov, Michael Hummel\",\"doi\":\"10.1016/j.jaap.2024.106811\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Numerous studies have explored the behaviour of various lignin types during carbonisation. Yet, misconceptions persist regarding the effects arising from both the source plant and production method of lignin. Lignin is often referenced merely by type, lacking detailed characterisation. Our research examines the properties of three lignin types, elucidates their behaviour during pyrolysis, and establishes the structure-property correlation and interaction of lignin with deep eutectic solvents. By combining several analytical techniques — including NMR, FTIR, XPS, TGA-MS for functional group detection, and HPLC, EA, and ICP for compositional analysis, alongside particle size distribution and SEC for morphology — we can conduct a thorough analysis that facilitates a meaningful comparison across lignin types. This approach allows for better control over the desired carbon properties. Furthermore, we demonstrate how modification with deep eutectic solvents enables the production of biochar from different lignin types, exhibiting properties conducive to large-scale, one-step sustainable production of biochar.</div></div>\",\"PeriodicalId\":345,\"journal\":{\"name\":\"Journal of Analytical and Applied Pyrolysis\",\"volume\":\"183 \",\"pages\":\"Article 106811\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Analytical and Applied Pyrolysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165237024004662\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical and Applied Pyrolysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165237024004662","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Carbonisation of lignin in the presence of a eutectic salt mixture: Identifying the lignin properties that govern the characteristics of the resulting carbon material
Numerous studies have explored the behaviour of various lignin types during carbonisation. Yet, misconceptions persist regarding the effects arising from both the source plant and production method of lignin. Lignin is often referenced merely by type, lacking detailed characterisation. Our research examines the properties of three lignin types, elucidates their behaviour during pyrolysis, and establishes the structure-property correlation and interaction of lignin with deep eutectic solvents. By combining several analytical techniques — including NMR, FTIR, XPS, TGA-MS for functional group detection, and HPLC, EA, and ICP for compositional analysis, alongside particle size distribution and SEC for morphology — we can conduct a thorough analysis that facilitates a meaningful comparison across lignin types. This approach allows for better control over the desired carbon properties. Furthermore, we demonstrate how modification with deep eutectic solvents enables the production of biochar from different lignin types, exhibiting properties conducive to large-scale, one-step sustainable production of biochar.
期刊介绍:
The Journal of Analytical and Applied Pyrolysis (JAAP) is devoted to the publication of papers dealing with innovative applications of pyrolysis processes, the characterization of products related to pyrolysis reactions, and investigations of reaction mechanism. To be considered by JAAP, a manuscript should present significant progress in these topics. The novelty must be satisfactorily argued in the cover letter. A manuscript with a cover letter to the editor not addressing the novelty is likely to be rejected without review.