Morteza Akbari , Abbas-Ali Zamani , Mohammad Seifi , Bartolomeo Pantò , Tomasz Falborski , Robert Jankowski
{"title":"配备摩擦调谐质量阻尼器的被动/主动基础隔震建筑的最优非线性分数阶控制器","authors":"Morteza Akbari , Abbas-Ali Zamani , Mohammad Seifi , Bartolomeo Pantò , Tomasz Falborski , Robert Jankowski","doi":"10.1016/j.cnsns.2024.108405","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents an optimal nonlinear fractional-order controller (ONFOC) designed to reduce the seismic responses of tall buildings equipped with a base-isolation (BI) system and friction-tuned mass dampers (FTMDs). The parameters for the BI and FTMD systems, as well as their combinations (BI-FTMD and active BI-FTMD or ABI-FTMD), were optimized separately using a multi-objective quantum-inspired seagull optimization algorithm (MOQSOA). The seismic performances of the BI, FTMD, BI-FTMD, and ABI-FTMD systems for a 15-storey building subjected to two far-field (Loma Prieta and Landers) and two near-fields (Tabas and Northridge) earthquakes were evaluated. The results indicated that structures with BI, FTMD, BI-FTMD, and ABI-FTMD systems outperformed the uncontrolled structure in reducing structural responses during the design earthquakes (Loma Prieta and Tabas). However, under validation earthquakes (Landers and Northridge), the peak acceleration of the building with the FTMD system was worse than that of the uncontrolled structure during the near-field Northridge earthquake. To address this issue, we proposed a combination of the active BI system and the FTMD system. Time history analysis results demonstrated that for the building equipped with the ABI-FTMD system, the peak displacement, peak acceleration, and peak inter-storey drift were reduced by approximately 60%, 64%, and 78%, respectively, as compared to the uncontrolled structure.</div></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An optimal nonlinear fractional order controller for passive/active base isolation building equipped with friction-tuned mass dampers\",\"authors\":\"Morteza Akbari , Abbas-Ali Zamani , Mohammad Seifi , Bartolomeo Pantò , Tomasz Falborski , Robert Jankowski\",\"doi\":\"10.1016/j.cnsns.2024.108405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents an optimal nonlinear fractional-order controller (ONFOC) designed to reduce the seismic responses of tall buildings equipped with a base-isolation (BI) system and friction-tuned mass dampers (FTMDs). The parameters for the BI and FTMD systems, as well as their combinations (BI-FTMD and active BI-FTMD or ABI-FTMD), were optimized separately using a multi-objective quantum-inspired seagull optimization algorithm (MOQSOA). The seismic performances of the BI, FTMD, BI-FTMD, and ABI-FTMD systems for a 15-storey building subjected to two far-field (Loma Prieta and Landers) and two near-fields (Tabas and Northridge) earthquakes were evaluated. The results indicated that structures with BI, FTMD, BI-FTMD, and ABI-FTMD systems outperformed the uncontrolled structure in reducing structural responses during the design earthquakes (Loma Prieta and Tabas). However, under validation earthquakes (Landers and Northridge), the peak acceleration of the building with the FTMD system was worse than that of the uncontrolled structure during the near-field Northridge earthquake. To address this issue, we proposed a combination of the active BI system and the FTMD system. Time history analysis results demonstrated that for the building equipped with the ABI-FTMD system, the peak displacement, peak acceleration, and peak inter-storey drift were reduced by approximately 60%, 64%, and 78%, respectively, as compared to the uncontrolled structure.</div></div>\",\"PeriodicalId\":50658,\"journal\":{\"name\":\"Communications in Nonlinear Science and Numerical Simulation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Nonlinear Science and Numerical Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1007570424005902\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007570424005902","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
An optimal nonlinear fractional order controller for passive/active base isolation building equipped with friction-tuned mass dampers
This paper presents an optimal nonlinear fractional-order controller (ONFOC) designed to reduce the seismic responses of tall buildings equipped with a base-isolation (BI) system and friction-tuned mass dampers (FTMDs). The parameters for the BI and FTMD systems, as well as their combinations (BI-FTMD and active BI-FTMD or ABI-FTMD), were optimized separately using a multi-objective quantum-inspired seagull optimization algorithm (MOQSOA). The seismic performances of the BI, FTMD, BI-FTMD, and ABI-FTMD systems for a 15-storey building subjected to two far-field (Loma Prieta and Landers) and two near-fields (Tabas and Northridge) earthquakes were evaluated. The results indicated that structures with BI, FTMD, BI-FTMD, and ABI-FTMD systems outperformed the uncontrolled structure in reducing structural responses during the design earthquakes (Loma Prieta and Tabas). However, under validation earthquakes (Landers and Northridge), the peak acceleration of the building with the FTMD system was worse than that of the uncontrolled structure during the near-field Northridge earthquake. To address this issue, we proposed a combination of the active BI system and the FTMD system. Time history analysis results demonstrated that for the building equipped with the ABI-FTMD system, the peak displacement, peak acceleration, and peak inter-storey drift were reduced by approximately 60%, 64%, and 78%, respectively, as compared to the uncontrolled structure.
期刊介绍:
The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity.
The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged.
Topics of interest:
Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity.
No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.