Dao-Long Chen , Chien-Ming Chen , Chin-I. Tsai , Ryan Chen , Hsin-Chih Shih , Ian Hu , Sheng-Rui Jian
{"title":"利用多层板大挠度理论进行超薄芯片三点弯曲试验的强度表征","authors":"Dao-Long Chen , Chien-Ming Chen , Chin-I. Tsai , Ryan Chen , Hsin-Chih Shih , Ian Hu , Sheng-Rui Jian","doi":"10.1016/j.eml.2024.102249","DOIUrl":null,"url":null,"abstract":"<div><div>This study developed mathematical formulas for a two-layer structure, specifically an ultrathin memory die with a film, which accounted for large deflection effects with Legendre-Jacobi’s elliptic integrals and frictional forces on the supports. The formulas were used to calculate die strength using three-point bending tests and were verified through comparisons with simulated and measured load-deflection curves. The study found that the Poisson's effect cannot be neglected for plate-like structures, and the slip effect was also significant, with accounting for friction improving accuracy. Additionally, the span between supports was found to increase nonlinearity. The study concluded that stress-deflection curves derived in the study can be used to determine die strength, with calculated strengths of 745 MPa and 1296 MPa for film-up and film-down configurations, respectively.</div></div>","PeriodicalId":56247,"journal":{"name":"Extreme Mechanics Letters","volume":"72 ","pages":"Article 102249"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strength characterization of ultrathin chips by using large deflection theory of multi-layer plate for three-point bending tests\",\"authors\":\"Dao-Long Chen , Chien-Ming Chen , Chin-I. Tsai , Ryan Chen , Hsin-Chih Shih , Ian Hu , Sheng-Rui Jian\",\"doi\":\"10.1016/j.eml.2024.102249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study developed mathematical formulas for a two-layer structure, specifically an ultrathin memory die with a film, which accounted for large deflection effects with Legendre-Jacobi’s elliptic integrals and frictional forces on the supports. The formulas were used to calculate die strength using three-point bending tests and were verified through comparisons with simulated and measured load-deflection curves. The study found that the Poisson's effect cannot be neglected for plate-like structures, and the slip effect was also significant, with accounting for friction improving accuracy. Additionally, the span between supports was found to increase nonlinearity. The study concluded that stress-deflection curves derived in the study can be used to determine die strength, with calculated strengths of 745 MPa and 1296 MPa for film-up and film-down configurations, respectively.</div></div>\",\"PeriodicalId\":56247,\"journal\":{\"name\":\"Extreme Mechanics Letters\",\"volume\":\"72 \",\"pages\":\"Article 102249\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Extreme Mechanics Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352431624001299\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extreme Mechanics Letters","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352431624001299","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Strength characterization of ultrathin chips by using large deflection theory of multi-layer plate for three-point bending tests
This study developed mathematical formulas for a two-layer structure, specifically an ultrathin memory die with a film, which accounted for large deflection effects with Legendre-Jacobi’s elliptic integrals and frictional forces on the supports. The formulas were used to calculate die strength using three-point bending tests and were verified through comparisons with simulated and measured load-deflection curves. The study found that the Poisson's effect cannot be neglected for plate-like structures, and the slip effect was also significant, with accounting for friction improving accuracy. Additionally, the span between supports was found to increase nonlinearity. The study concluded that stress-deflection curves derived in the study can be used to determine die strength, with calculated strengths of 745 MPa and 1296 MPa for film-up and film-down configurations, respectively.
期刊介绍:
Extreme Mechanics Letters (EML) enables rapid communication of research that highlights the role of mechanics in multi-disciplinary areas across materials science, physics, chemistry, biology, medicine and engineering. Emphasis is on the impact, depth and originality of new concepts, methods and observations at the forefront of applied sciences.