Shuo Li , Shan Wang , Yanxuan Chen , Xianliang Meng , Lin Wang , Junsheng Zhu
{"title":"轻松合成具有超高储锌性能的 K0.5Mn2O4-1.5H2O/rGO 复合材料","authors":"Shuo Li , Shan Wang , Yanxuan Chen , Xianliang Meng , Lin Wang , Junsheng Zhu","doi":"10.1016/j.nxener.2024.100204","DOIUrl":null,"url":null,"abstract":"<div><div>Zinc-ion batteries have drawn much attention due to their good safety and low cost. In this work, a straightforward 1-pot pyrolysis process has been utilized to prepare novel K<sub>0.5</sub>Mn<sub>2</sub>O<sub>4</sub>·1.5H<sub>2</sub>O/rGO (KMrGO) composites. In KMrGO, the layered structure of reduced graphene oxide (rGO) can efficiently improve the electrical conductivity of K<sub>0.5</sub>Mn<sub>2</sub>O<sub>4</sub>·1.5H<sub>2</sub>O, enabling KMrGO to demonstrate high zinc storage performance. Although a very small amount of rGO (∼1.8%) has been introduced, the reversible capacity of KMrGO reaches 230.1 mAh g<sup>−1</sup> after 250 cycles at 0.2 A g<sup>−1</sup>. Even after 1200 cycles at a high current density of 1 A g<sup>−1</sup>, KMrGO remains a good capacity retention of 70.2%. Considering the simple preparation of KMrGO, this method can provide a new route for synthesizing other metal dioxide/rGO composites.</div></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":"6 ","pages":"Article 100204"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Facile synthesis of K0.5Mn2O4·1.5H2O/rGO composites with ultrahigh zinc storage properties\",\"authors\":\"Shuo Li , Shan Wang , Yanxuan Chen , Xianliang Meng , Lin Wang , Junsheng Zhu\",\"doi\":\"10.1016/j.nxener.2024.100204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Zinc-ion batteries have drawn much attention due to their good safety and low cost. In this work, a straightforward 1-pot pyrolysis process has been utilized to prepare novel K<sub>0.5</sub>Mn<sub>2</sub>O<sub>4</sub>·1.5H<sub>2</sub>O/rGO (KMrGO) composites. In KMrGO, the layered structure of reduced graphene oxide (rGO) can efficiently improve the electrical conductivity of K<sub>0.5</sub>Mn<sub>2</sub>O<sub>4</sub>·1.5H<sub>2</sub>O, enabling KMrGO to demonstrate high zinc storage performance. Although a very small amount of rGO (∼1.8%) has been introduced, the reversible capacity of KMrGO reaches 230.1 mAh g<sup>−1</sup> after 250 cycles at 0.2 A g<sup>−1</sup>. Even after 1200 cycles at a high current density of 1 A g<sup>−1</sup>, KMrGO remains a good capacity retention of 70.2%. Considering the simple preparation of KMrGO, this method can provide a new route for synthesizing other metal dioxide/rGO composites.</div></div>\",\"PeriodicalId\":100957,\"journal\":{\"name\":\"Next Energy\",\"volume\":\"6 \",\"pages\":\"Article 100204\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Next Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949821X24001091\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949821X24001091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Facile synthesis of K0.5Mn2O4·1.5H2O/rGO composites with ultrahigh zinc storage properties
Zinc-ion batteries have drawn much attention due to their good safety and low cost. In this work, a straightforward 1-pot pyrolysis process has been utilized to prepare novel K0.5Mn2O4·1.5H2O/rGO (KMrGO) composites. In KMrGO, the layered structure of reduced graphene oxide (rGO) can efficiently improve the electrical conductivity of K0.5Mn2O4·1.5H2O, enabling KMrGO to demonstrate high zinc storage performance. Although a very small amount of rGO (∼1.8%) has been introduced, the reversible capacity of KMrGO reaches 230.1 mAh g−1 after 250 cycles at 0.2 A g−1. Even after 1200 cycles at a high current density of 1 A g−1, KMrGO remains a good capacity retention of 70.2%. Considering the simple preparation of KMrGO, this method can provide a new route for synthesizing other metal dioxide/rGO composites.