利用改进的 YOLOv5-keypoint 框架和多注意机制定制测量鱼体尺寸的方法

IF 5.1 Q1 ENVIRONMENTAL SCIENCES
Danying Cao , Cheng Guo , Mijuan Shi , Yuhang Liu , Yutong Fang , Hong Yang , Yingyin Cheng , Wanting Zhang , Yaping Wang , Yongming Li , Xiao-Qin Xia
{"title":"利用改进的 YOLOv5-keypoint 框架和多注意机制定制测量鱼体尺寸的方法","authors":"Danying Cao ,&nbsp;Cheng Guo ,&nbsp;Mijuan Shi ,&nbsp;Yuhang Liu ,&nbsp;Yutong Fang ,&nbsp;Hong Yang ,&nbsp;Yingyin Cheng ,&nbsp;Wanting Zhang ,&nbsp;Yaping Wang ,&nbsp;Yongming Li ,&nbsp;Xiao-Qin Xia","doi":"10.1016/j.watbs.2024.100293","DOIUrl":null,"url":null,"abstract":"<div><div>Dimensional data directly reflects the growth rate of individual fish, an important economic trait of interest to fish researchers. Efficiently obtaining large-scale fish dimension data would be valuable for both selective breeding and production. To address this, our study proposes a custom dimension measurement method for fish using the YOLOv5-keypoint framework with multi-attention mechanisms. We optimized the YOLOv5 framework, incorporated the SimAM attention mechanism to achieve more accurate and faster fish detection, and added customizable landmarks to the network structure, enabling flexible configuration of the number and location of feature points in the training dataset. This method is applicable to various aquacultural species and other objects. We tested the effectiveness of the method using the economically important grass carp (<em>Ctenopharyngodon idella</em>). The proposed method outperforms pure YOLOv5, Faster R-CNN, and SSD in terms of precision and recall rates, achieving an impressive average precision of 0.9781. Notably, field trials confirmed the method's exceptional measurement accuracy, exceeding 97% compatibility with manual measurements, while demonstrating a real-time speed of 38 frames per second on the NVIDIA RTX A4000. This enables efficient and accurate large-scale surface dimension measurements of economic fish. To facilitate massive measurements in agricultural research, we have implemented this method as an online platform, called Mode-recognition Ruler (MrRuler, <span><span>http://bioinfo.ihb.ac.cn/mrruler</span><svg><path></path></svg></span>). The platform identifies objects in a single image at an average speed of 0.486 ​± ​0.005 ​s, based on a dataset of 10,000 images. MrRuler includes two preset carp models and allows users to upload training datasets for custom models of their targets of interest.</div></div>","PeriodicalId":101277,"journal":{"name":"Water Biology and Security","volume":"3 4","pages":"Article 100293"},"PeriodicalIF":5.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A method for custom measurement of fish dimensions using the improved YOLOv5-keypoint framework with multi-attention mechanisms\",\"authors\":\"Danying Cao ,&nbsp;Cheng Guo ,&nbsp;Mijuan Shi ,&nbsp;Yuhang Liu ,&nbsp;Yutong Fang ,&nbsp;Hong Yang ,&nbsp;Yingyin Cheng ,&nbsp;Wanting Zhang ,&nbsp;Yaping Wang ,&nbsp;Yongming Li ,&nbsp;Xiao-Qin Xia\",\"doi\":\"10.1016/j.watbs.2024.100293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Dimensional data directly reflects the growth rate of individual fish, an important economic trait of interest to fish researchers. Efficiently obtaining large-scale fish dimension data would be valuable for both selective breeding and production. To address this, our study proposes a custom dimension measurement method for fish using the YOLOv5-keypoint framework with multi-attention mechanisms. We optimized the YOLOv5 framework, incorporated the SimAM attention mechanism to achieve more accurate and faster fish detection, and added customizable landmarks to the network structure, enabling flexible configuration of the number and location of feature points in the training dataset. This method is applicable to various aquacultural species and other objects. We tested the effectiveness of the method using the economically important grass carp (<em>Ctenopharyngodon idella</em>). The proposed method outperforms pure YOLOv5, Faster R-CNN, and SSD in terms of precision and recall rates, achieving an impressive average precision of 0.9781. Notably, field trials confirmed the method's exceptional measurement accuracy, exceeding 97% compatibility with manual measurements, while demonstrating a real-time speed of 38 frames per second on the NVIDIA RTX A4000. This enables efficient and accurate large-scale surface dimension measurements of economic fish. To facilitate massive measurements in agricultural research, we have implemented this method as an online platform, called Mode-recognition Ruler (MrRuler, <span><span>http://bioinfo.ihb.ac.cn/mrruler</span><svg><path></path></svg></span>). The platform identifies objects in a single image at an average speed of 0.486 ​± ​0.005 ​s, based on a dataset of 10,000 images. MrRuler includes two preset carp models and allows users to upload training datasets for custom models of their targets of interest.</div></div>\",\"PeriodicalId\":101277,\"journal\":{\"name\":\"Water Biology and Security\",\"volume\":\"3 4\",\"pages\":\"Article 100293\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Biology and Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772735124000581\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Biology and Security","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772735124000581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

尺寸数据直接反映了个体鱼类的生长速度,这是鱼类研究人员感兴趣的一个重要经济特征。有效获取大规模鱼类尺寸数据对选育和生产都很有价值。为此,我们的研究提出了一种使用 YOLOv5 关键点框架和多关注机制的鱼类定制尺寸测量方法。我们优化了 YOLOv5 框架,纳入了 SimAM 注意机制,以实现更准确、更快速的鱼类检测,并在网络结构中添加了可定制的地标,从而可以灵活配置训练数据集中特征点的数量和位置。该方法适用于各种水产养殖物种和其他对象。我们使用具有重要经济价值的草鱼(Ctenopharyngodon idella)测试了该方法的有效性。就精确度和召回率而言,所提出的方法优于纯 YOLOv5、Faster R-CNN 和 SSD,达到了令人印象深刻的平均精确度 0.9781。值得注意的是,现场试验证实了该方法卓越的测量精度,与人工测量的兼容性超过 97%,同时在英伟达 RTX A4000 上的实时速度达到每秒 38 帧。这样就能对经济鱼类进行高效、准确的大规模表面尺寸测量。为了方便农业研究中的大规模测量,我们将这种方法作为一个在线平台加以实施,该平台名为 "模式识别标尺"(MrRuler,http://bioinfo.ihb.ac.cn/mrruler)。基于 10,000 张图像的数据集,该平台识别单张图像中物体的平均速度为 0.486 ± 0.005 秒。MrRuler 包括两个预设的鲤鱼模型,并允许用户上传训练数据集,为其感兴趣的目标定制模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A method for custom measurement of fish dimensions using the improved YOLOv5-keypoint framework with multi-attention mechanisms
Dimensional data directly reflects the growth rate of individual fish, an important economic trait of interest to fish researchers. Efficiently obtaining large-scale fish dimension data would be valuable for both selective breeding and production. To address this, our study proposes a custom dimension measurement method for fish using the YOLOv5-keypoint framework with multi-attention mechanisms. We optimized the YOLOv5 framework, incorporated the SimAM attention mechanism to achieve more accurate and faster fish detection, and added customizable landmarks to the network structure, enabling flexible configuration of the number and location of feature points in the training dataset. This method is applicable to various aquacultural species and other objects. We tested the effectiveness of the method using the economically important grass carp (Ctenopharyngodon idella). The proposed method outperforms pure YOLOv5, Faster R-CNN, and SSD in terms of precision and recall rates, achieving an impressive average precision of 0.9781. Notably, field trials confirmed the method's exceptional measurement accuracy, exceeding 97% compatibility with manual measurements, while demonstrating a real-time speed of 38 frames per second on the NVIDIA RTX A4000. This enables efficient and accurate large-scale surface dimension measurements of economic fish. To facilitate massive measurements in agricultural research, we have implemented this method as an online platform, called Mode-recognition Ruler (MrRuler, http://bioinfo.ihb.ac.cn/mrruler). The platform identifies objects in a single image at an average speed of 0.486 ​± ​0.005 ​s, based on a dataset of 10,000 images. MrRuler includes two preset carp models and allows users to upload training datasets for custom models of their targets of interest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信