Parisa Dashti , Eric A. Lewallen , Gary S. Stein , Bram C.J. van der Eerden , Johannes P.T.M. van Leeuwen , Andre J. van Wijnen
{"title":"动态应变和β-catenin介导的静止间充质基质/干细胞干扰素反应基因抑制作用","authors":"Parisa Dashti , Eric A. Lewallen , Gary S. Stein , Bram C.J. van der Eerden , Johannes P.T.M. van Leeuwen , Andre J. van Wijnen","doi":"10.1016/j.bbrep.2024.101847","DOIUrl":null,"url":null,"abstract":"<div><div>Multipotent bone marrow mesenchymal stromal/stem cells (MSCs) respond to mechanical forces. MSCs perceive static and dynamic forces through focal adhesions, as well as cytoskeletal and intranuclear actin. Dynamic strain stimulates nuclear β-catenin (Ctnnb1) that controls gene expression and suppresses osteogenesis. The sensitivity of MSCs to external mechanical forces may be altered by cessation of proliferation, when MSCs begin to express extracellular matrix (ECM) proteins and generate cell/cell contact. Therefore, we assessed whether and how gene expression of proliferating versus quiescent MSCs responds to mechanical stimuli. We used RNA-seq and RT-qPCR to evaluate transcriptomes at 3 h after dynamic strain (200 cycles × 2 % for 20 min) once daily during a two-day time course in naïve (uninduced) MSCs. Transcriptomes of untreated MSCs show that cells become quiescent at day 2 when proliferation markers are downregulated, and ECM related genes are upregulated. On both day 1 and day 2, dynamic strain stimulates expression of oxidative stress related genes (e.g., Nqo1, Prl2c2, Prl2c3). Strikingly, in quiescent MSCs, we observe that dynamic strain suppresses multiple interferon (IFN) responsive genes (e.g., Irf7, Oasl2 and Isg15). IFN responsive genes are activated in MSCs depleted of β-catenin using siRNAs, indicating that β-catenin normally suppresses these genes. Our data indicate that the functional effects of dynamic strain and β-catenin on IFN responsive genes in MSCs are mechanistically coupled. Because dynamic strain and β-catenin reduce the osteogenic potential of MSCs, our findings suggest that IFN responsive genes are novel biomarkers and potential regulators of mechanical responses at early stages of lineage-commitment in post-proliferative MSCs.</div></div>","PeriodicalId":8771,"journal":{"name":"Biochemistry and Biophysics Reports","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic strain and β-catenin mediated suppression of interferon responsive genes in quiescent mesenchymal stromal/stem cells\",\"authors\":\"Parisa Dashti , Eric A. Lewallen , Gary S. Stein , Bram C.J. van der Eerden , Johannes P.T.M. van Leeuwen , Andre J. van Wijnen\",\"doi\":\"10.1016/j.bbrep.2024.101847\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Multipotent bone marrow mesenchymal stromal/stem cells (MSCs) respond to mechanical forces. MSCs perceive static and dynamic forces through focal adhesions, as well as cytoskeletal and intranuclear actin. Dynamic strain stimulates nuclear β-catenin (Ctnnb1) that controls gene expression and suppresses osteogenesis. The sensitivity of MSCs to external mechanical forces may be altered by cessation of proliferation, when MSCs begin to express extracellular matrix (ECM) proteins and generate cell/cell contact. Therefore, we assessed whether and how gene expression of proliferating versus quiescent MSCs responds to mechanical stimuli. We used RNA-seq and RT-qPCR to evaluate transcriptomes at 3 h after dynamic strain (200 cycles × 2 % for 20 min) once daily during a two-day time course in naïve (uninduced) MSCs. Transcriptomes of untreated MSCs show that cells become quiescent at day 2 when proliferation markers are downregulated, and ECM related genes are upregulated. On both day 1 and day 2, dynamic strain stimulates expression of oxidative stress related genes (e.g., Nqo1, Prl2c2, Prl2c3). Strikingly, in quiescent MSCs, we observe that dynamic strain suppresses multiple interferon (IFN) responsive genes (e.g., Irf7, Oasl2 and Isg15). IFN responsive genes are activated in MSCs depleted of β-catenin using siRNAs, indicating that β-catenin normally suppresses these genes. Our data indicate that the functional effects of dynamic strain and β-catenin on IFN responsive genes in MSCs are mechanistically coupled. Because dynamic strain and β-catenin reduce the osteogenic potential of MSCs, our findings suggest that IFN responsive genes are novel biomarkers and potential regulators of mechanical responses at early stages of lineage-commitment in post-proliferative MSCs.</div></div>\",\"PeriodicalId\":8771,\"journal\":{\"name\":\"Biochemistry and Biophysics Reports\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry and Biophysics Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405580824002115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry and Biophysics Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405580824002115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Dynamic strain and β-catenin mediated suppression of interferon responsive genes in quiescent mesenchymal stromal/stem cells
Multipotent bone marrow mesenchymal stromal/stem cells (MSCs) respond to mechanical forces. MSCs perceive static and dynamic forces through focal adhesions, as well as cytoskeletal and intranuclear actin. Dynamic strain stimulates nuclear β-catenin (Ctnnb1) that controls gene expression and suppresses osteogenesis. The sensitivity of MSCs to external mechanical forces may be altered by cessation of proliferation, when MSCs begin to express extracellular matrix (ECM) proteins and generate cell/cell contact. Therefore, we assessed whether and how gene expression of proliferating versus quiescent MSCs responds to mechanical stimuli. We used RNA-seq and RT-qPCR to evaluate transcriptomes at 3 h after dynamic strain (200 cycles × 2 % for 20 min) once daily during a two-day time course in naïve (uninduced) MSCs. Transcriptomes of untreated MSCs show that cells become quiescent at day 2 when proliferation markers are downregulated, and ECM related genes are upregulated. On both day 1 and day 2, dynamic strain stimulates expression of oxidative stress related genes (e.g., Nqo1, Prl2c2, Prl2c3). Strikingly, in quiescent MSCs, we observe that dynamic strain suppresses multiple interferon (IFN) responsive genes (e.g., Irf7, Oasl2 and Isg15). IFN responsive genes are activated in MSCs depleted of β-catenin using siRNAs, indicating that β-catenin normally suppresses these genes. Our data indicate that the functional effects of dynamic strain and β-catenin on IFN responsive genes in MSCs are mechanistically coupled. Because dynamic strain and β-catenin reduce the osteogenic potential of MSCs, our findings suggest that IFN responsive genes are novel biomarkers and potential regulators of mechanical responses at early stages of lineage-commitment in post-proliferative MSCs.
期刊介绍:
Open access, online only, peer-reviewed international journal in the Life Sciences, established in 2014 Biochemistry and Biophysics Reports (BB Reports) publishes original research in all aspects of Biochemistry, Biophysics and related areas like Molecular and Cell Biology. BB Reports welcomes solid though more preliminary, descriptive and small scale results if they have the potential to stimulate and/or contribute to future research, leading to new insights or hypothesis. Primary criteria for acceptance is that the work is original, scientifically and technically sound and provides valuable knowledge to life sciences research. We strongly believe all results deserve to be published and documented for the advancement of science. BB Reports specifically appreciates receiving reports on: Negative results, Replication studies, Reanalysis of previous datasets.