GRACE 卫星数据的动态模式分解

IF 4 2区 环境科学与生态学 Q1 WATER RESOURCES
G. Libero , V. Ciriello , D.M. Tartakovsky
{"title":"GRACE 卫星数据的动态模式分解","authors":"G. Libero ,&nbsp;V. Ciriello ,&nbsp;D.M. Tartakovsky","doi":"10.1016/j.advwatres.2024.104834","DOIUrl":null,"url":null,"abstract":"<div><div>Advancements in satellite technology yield environmental data with ever improving spatial coverage and temporal resolution. This necessitates the development of techniques to discern actionable information from large amounts of such data. We explore the potential of dynamic mode decomposition (DMD) to discover the dynamics of spatially correlated structures present in global-scale data, specifically in observations of total water storage anomalies provided by GRACE satellite missions. Our results demonstrate that DMD enables data compression and extrapolation from a reduced set of dominant spatiotemporal structures. The accuracy of its predictions of global system dynamics is preserved in its reconstruction of local time series. These findings suggest potential uses of DMD in analysis of remote-sensing data for hydrologic applications.</div></div>","PeriodicalId":7614,"journal":{"name":"Advances in Water Resources","volume":"193 ","pages":"Article 104834"},"PeriodicalIF":4.0000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic mode decomposition of GRACE satellite data\",\"authors\":\"G. Libero ,&nbsp;V. Ciriello ,&nbsp;D.M. Tartakovsky\",\"doi\":\"10.1016/j.advwatres.2024.104834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Advancements in satellite technology yield environmental data with ever improving spatial coverage and temporal resolution. This necessitates the development of techniques to discern actionable information from large amounts of such data. We explore the potential of dynamic mode decomposition (DMD) to discover the dynamics of spatially correlated structures present in global-scale data, specifically in observations of total water storage anomalies provided by GRACE satellite missions. Our results demonstrate that DMD enables data compression and extrapolation from a reduced set of dominant spatiotemporal structures. The accuracy of its predictions of global system dynamics is preserved in its reconstruction of local time series. These findings suggest potential uses of DMD in analysis of remote-sensing data for hydrologic applications.</div></div>\",\"PeriodicalId\":7614,\"journal\":{\"name\":\"Advances in Water Resources\",\"volume\":\"193 \",\"pages\":\"Article 104834\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Water Resources\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0309170824002215\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Water Resources","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0309170824002215","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

摘要

卫星技术的进步使环境数据的空间覆盖范围和时间分辨率不断提高。这就需要开发相关技术,以便从大量此类数据中发现可操作的信息。我们探索了动态模式分解(DMD)的潜力,以发现全球尺度数据(特别是 GRACE 卫星任务提供的总蓄水量异常观测数据)中存在的空间相关结构的动态变化。我们的研究结果表明,DMD 可以对数据进行压缩,并从减少的一组主要时空结构中进行推断。其对全球系统动态预测的准确性在重建局部时间序列时得以保留。这些研究结果表明,DMD 有可能用于水文遥感数据的分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic mode decomposition of GRACE satellite data
Advancements in satellite technology yield environmental data with ever improving spatial coverage and temporal resolution. This necessitates the development of techniques to discern actionable information from large amounts of such data. We explore the potential of dynamic mode decomposition (DMD) to discover the dynamics of spatially correlated structures present in global-scale data, specifically in observations of total water storage anomalies provided by GRACE satellite missions. Our results demonstrate that DMD enables data compression and extrapolation from a reduced set of dominant spatiotemporal structures. The accuracy of its predictions of global system dynamics is preserved in its reconstruction of local time series. These findings suggest potential uses of DMD in analysis of remote-sensing data for hydrologic applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Water Resources
Advances in Water Resources 环境科学-水资源
CiteScore
9.40
自引率
6.40%
发文量
171
审稿时长
36 days
期刊介绍: Advances in Water Resources provides a forum for the presentation of fundamental scientific advances in the understanding of water resources systems. The scope of Advances in Water Resources includes any combination of theoretical, computational, and experimental approaches used to advance fundamental understanding of surface or subsurface water resources systems or the interaction of these systems with the atmosphere, geosphere, biosphere, and human societies. Manuscripts involving case studies that do not attempt to reach broader conclusions, research on engineering design, applied hydraulics, or water quality and treatment, as well as applications of existing knowledge that do not advance fundamental understanding of hydrological processes, are not appropriate for Advances in Water Resources. Examples of appropriate topical areas that will be considered include the following: • Surface and subsurface hydrology • Hydrometeorology • Environmental fluid dynamics • Ecohydrology and ecohydrodynamics • Multiphase transport phenomena in porous media • Fluid flow and species transport and reaction processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信