Yuanlin Zeng , Changyi Xu , Jinyang Zhao , Zhaowang Dong , Heng Xiong , Yifan Shi , Baoqiang Xu , Bin Yang , Jingcheng Dong , Yuhong He
{"title":"真空蒸馏过程中铜冶炼系统酸性污泥中铅、硒和汞的挥发与清洁回收","authors":"Yuanlin Zeng , Changyi Xu , Jinyang Zhao , Zhaowang Dong , Heng Xiong , Yifan Shi , Baoqiang Xu , Bin Yang , Jingcheng Dong , Yuhong He","doi":"10.1016/j.psep.2024.10.081","DOIUrl":null,"url":null,"abstract":"<div><div>The high lead acid sludge, containing a small amount of selenium and mercury, is a hazardous waste product of the copper smelting system. Improper disposal of this waste can cause serious harm to the environment. In this study, the method of vacuum distillation was proposed for treating the high lead acid sludge. The study aimed to investigate the volatilization rule of selenium, mercury, and lead in the acid sludge during vacuum distillation, as well as to purify PbSe and metallic lead. The results indicated that under 5 Pa, Hg and Se commence volatilizing at 300 ℃, the content of Hg in volatile substances remains relatively constant after reaching 400 ℃, demonstrating nearly complete volatilization at this temperature with a ratio of 92.93 %. Similarly, selenium almost completely volatilizes at 800 ℃ with a ratio of 96.74 %, while lead does so at around 1000 ℃ with a ratio of approximately 99.27 %. Mercury at 400 ℃ can be recovered as mercury selenide. Lead selenide can be achieved at 800 ℃, while lead sulfate can be decomposed and purified at 1000 ℃ to obtain metallic lead with a purity higher than 99 %. The method can properly treat and recover mercury, selenium, lead and other elements in the acid sludge with short process and no pollution, which provides a new cleaning approach for high lead acid sludge.</div></div>","PeriodicalId":20743,"journal":{"name":"Process Safety and Environmental Protection","volume":"192 ","pages":"Pages 331-339"},"PeriodicalIF":6.9000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Volatilization and cleaning recovery of Pb, Se and Hg in acid sludge of copper smelting system during vacuum distillation\",\"authors\":\"Yuanlin Zeng , Changyi Xu , Jinyang Zhao , Zhaowang Dong , Heng Xiong , Yifan Shi , Baoqiang Xu , Bin Yang , Jingcheng Dong , Yuhong He\",\"doi\":\"10.1016/j.psep.2024.10.081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The high lead acid sludge, containing a small amount of selenium and mercury, is a hazardous waste product of the copper smelting system. Improper disposal of this waste can cause serious harm to the environment. In this study, the method of vacuum distillation was proposed for treating the high lead acid sludge. The study aimed to investigate the volatilization rule of selenium, mercury, and lead in the acid sludge during vacuum distillation, as well as to purify PbSe and metallic lead. The results indicated that under 5 Pa, Hg and Se commence volatilizing at 300 ℃, the content of Hg in volatile substances remains relatively constant after reaching 400 ℃, demonstrating nearly complete volatilization at this temperature with a ratio of 92.93 %. Similarly, selenium almost completely volatilizes at 800 ℃ with a ratio of 96.74 %, while lead does so at around 1000 ℃ with a ratio of approximately 99.27 %. Mercury at 400 ℃ can be recovered as mercury selenide. Lead selenide can be achieved at 800 ℃, while lead sulfate can be decomposed and purified at 1000 ℃ to obtain metallic lead with a purity higher than 99 %. The method can properly treat and recover mercury, selenium, lead and other elements in the acid sludge with short process and no pollution, which provides a new cleaning approach for high lead acid sludge.</div></div>\",\"PeriodicalId\":20743,\"journal\":{\"name\":\"Process Safety and Environmental Protection\",\"volume\":\"192 \",\"pages\":\"Pages 331-339\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Process Safety and Environmental Protection\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0957582024013624\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Process Safety and Environmental Protection","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957582024013624","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Volatilization and cleaning recovery of Pb, Se and Hg in acid sludge of copper smelting system during vacuum distillation
The high lead acid sludge, containing a small amount of selenium and mercury, is a hazardous waste product of the copper smelting system. Improper disposal of this waste can cause serious harm to the environment. In this study, the method of vacuum distillation was proposed for treating the high lead acid sludge. The study aimed to investigate the volatilization rule of selenium, mercury, and lead in the acid sludge during vacuum distillation, as well as to purify PbSe and metallic lead. The results indicated that under 5 Pa, Hg and Se commence volatilizing at 300 ℃, the content of Hg in volatile substances remains relatively constant after reaching 400 ℃, demonstrating nearly complete volatilization at this temperature with a ratio of 92.93 %. Similarly, selenium almost completely volatilizes at 800 ℃ with a ratio of 96.74 %, while lead does so at around 1000 ℃ with a ratio of approximately 99.27 %. Mercury at 400 ℃ can be recovered as mercury selenide. Lead selenide can be achieved at 800 ℃, while lead sulfate can be decomposed and purified at 1000 ℃ to obtain metallic lead with a purity higher than 99 %. The method can properly treat and recover mercury, selenium, lead and other elements in the acid sludge with short process and no pollution, which provides a new cleaning approach for high lead acid sludge.
期刊介绍:
The Process Safety and Environmental Protection (PSEP) journal is a leading international publication that focuses on the publication of high-quality, original research papers in the field of engineering, specifically those related to the safety of industrial processes and environmental protection. The journal encourages submissions that present new developments in safety and environmental aspects, particularly those that show how research findings can be applied in process engineering design and practice.
PSEP is particularly interested in research that brings fresh perspectives to established engineering principles, identifies unsolved problems, or suggests directions for future research. The journal also values contributions that push the boundaries of traditional engineering and welcomes multidisciplinary papers.
PSEP's articles are abstracted and indexed by a range of databases and services, which helps to ensure that the journal's research is accessible and recognized in the academic and professional communities. These databases include ANTE, Chemical Abstracts, Chemical Hazards in Industry, Current Contents, Elsevier Engineering Information database, Pascal Francis, Web of Science, Scopus, Engineering Information Database EnCompass LIT (Elsevier), and INSPEC. This wide coverage facilitates the dissemination of the journal's content to a global audience interested in process safety and environmental engineering.