{"title":"卡尔斯伯格海脊 Wocan-1 热液场海底硫化物氧化过程中铁氧氢氧化物的形成机制和金属的行为","authors":"","doi":"10.1016/j.oregeorev.2024.106307","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrothermal sulfides undergo complex oxidation process under seawater conditions, which has the potential to impact resource values and marine environments. However, the oxidation process is not fully explored, particularly regarding the transformation of minerals and the behavior of metals. In this paper, we conducted detailed mineralogical and geochemical analyses on a series of samples with varying degrees of oxidation, collected from the Wocan-1 hydrothermal field, Carlsberg Ridge, Northwest Indian Ocean. The principal purpose is to illuminate the formation and transformation of Fe (oxyhydr)oxides, and further to reveal the migration and redistribution of key metals throughout the oxidation process. We identified four types of Fe(−Si) (oxyhydr)oxides with two distinct formation mechanisms. Three Fe (oxyhydr)oxides are the direct oxidation products of pyrite and marcasite, while Fe-Si (oxyhydr)oxide precipitates from low-temperature hydrothermal fluids. Thin Fe (oxyhydr)oxide forms as the secondary product of euhedral pyrite at the early stage of oxidation. Pseudomorphic Fe (oxyhydr)oxide with low Fe contents, occurs as the replacement of euhedral marcasite. Filamentous Fe (oxyhydr)oxide, enriched in trace metals, is attributed to the uniform oxidation of subhedral pyrite-marcasite intergrowth. Moreover, major and trace elements occur multiple migrations and redistributions among primary sulfides, secondary products, and seawater. Notably, Fe (oxyhydr)oxides, through the sequestration mechanism, not only retain Cu and Zn released by the oxidation of primary sulfide minerals, but also scavenge Cu from seawater. However, the dissolution of Pb, As, Mo, and Co exceeds the amount retained during the oxidation, indicating that the potential release of toxic metals into the environment could pose a threat to the local ecosystem. These new insights can provide an initial foundation for the effect of submarine oxidation on economic values of sulfides and ecological environments of deep sea.</div></div>","PeriodicalId":19644,"journal":{"name":"Ore Geology Reviews","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formation mechanism of Fe oxyhydroxides and behavior of metals during the oxidation of submarine sulfides at the Wocan-1 hydrothermal field, Carlsberg Ridge\",\"authors\":\"\",\"doi\":\"10.1016/j.oregeorev.2024.106307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hydrothermal sulfides undergo complex oxidation process under seawater conditions, which has the potential to impact resource values and marine environments. However, the oxidation process is not fully explored, particularly regarding the transformation of minerals and the behavior of metals. In this paper, we conducted detailed mineralogical and geochemical analyses on a series of samples with varying degrees of oxidation, collected from the Wocan-1 hydrothermal field, Carlsberg Ridge, Northwest Indian Ocean. The principal purpose is to illuminate the formation and transformation of Fe (oxyhydr)oxides, and further to reveal the migration and redistribution of key metals throughout the oxidation process. We identified four types of Fe(−Si) (oxyhydr)oxides with two distinct formation mechanisms. Three Fe (oxyhydr)oxides are the direct oxidation products of pyrite and marcasite, while Fe-Si (oxyhydr)oxide precipitates from low-temperature hydrothermal fluids. Thin Fe (oxyhydr)oxide forms as the secondary product of euhedral pyrite at the early stage of oxidation. Pseudomorphic Fe (oxyhydr)oxide with low Fe contents, occurs as the replacement of euhedral marcasite. Filamentous Fe (oxyhydr)oxide, enriched in trace metals, is attributed to the uniform oxidation of subhedral pyrite-marcasite intergrowth. Moreover, major and trace elements occur multiple migrations and redistributions among primary sulfides, secondary products, and seawater. Notably, Fe (oxyhydr)oxides, through the sequestration mechanism, not only retain Cu and Zn released by the oxidation of primary sulfide minerals, but also scavenge Cu from seawater. However, the dissolution of Pb, As, Mo, and Co exceeds the amount retained during the oxidation, indicating that the potential release of toxic metals into the environment could pose a threat to the local ecosystem. These new insights can provide an initial foundation for the effect of submarine oxidation on economic values of sulfides and ecological environments of deep sea.</div></div>\",\"PeriodicalId\":19644,\"journal\":{\"name\":\"Ore Geology Reviews\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ore Geology Reviews\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169136824004402\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ore Geology Reviews","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169136824004402","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOLOGY","Score":null,"Total":0}
Formation mechanism of Fe oxyhydroxides and behavior of metals during the oxidation of submarine sulfides at the Wocan-1 hydrothermal field, Carlsberg Ridge
Hydrothermal sulfides undergo complex oxidation process under seawater conditions, which has the potential to impact resource values and marine environments. However, the oxidation process is not fully explored, particularly regarding the transformation of minerals and the behavior of metals. In this paper, we conducted detailed mineralogical and geochemical analyses on a series of samples with varying degrees of oxidation, collected from the Wocan-1 hydrothermal field, Carlsberg Ridge, Northwest Indian Ocean. The principal purpose is to illuminate the formation and transformation of Fe (oxyhydr)oxides, and further to reveal the migration and redistribution of key metals throughout the oxidation process. We identified four types of Fe(−Si) (oxyhydr)oxides with two distinct formation mechanisms. Three Fe (oxyhydr)oxides are the direct oxidation products of pyrite and marcasite, while Fe-Si (oxyhydr)oxide precipitates from low-temperature hydrothermal fluids. Thin Fe (oxyhydr)oxide forms as the secondary product of euhedral pyrite at the early stage of oxidation. Pseudomorphic Fe (oxyhydr)oxide with low Fe contents, occurs as the replacement of euhedral marcasite. Filamentous Fe (oxyhydr)oxide, enriched in trace metals, is attributed to the uniform oxidation of subhedral pyrite-marcasite intergrowth. Moreover, major and trace elements occur multiple migrations and redistributions among primary sulfides, secondary products, and seawater. Notably, Fe (oxyhydr)oxides, through the sequestration mechanism, not only retain Cu and Zn released by the oxidation of primary sulfide minerals, but also scavenge Cu from seawater. However, the dissolution of Pb, As, Mo, and Co exceeds the amount retained during the oxidation, indicating that the potential release of toxic metals into the environment could pose a threat to the local ecosystem. These new insights can provide an initial foundation for the effect of submarine oxidation on economic values of sulfides and ecological environments of deep sea.
期刊介绍:
Ore Geology Reviews aims to familiarize all earth scientists with recent advances in a number of interconnected disciplines related to the study of, and search for, ore deposits. The reviews range from brief to longer contributions, but the journal preferentially publishes manuscripts that fill the niche between the commonly shorter journal articles and the comprehensive book coverages, and thus has a special appeal to many authors and readers.