{"title":"用石墨烯纳米片(GNPs)/环氧纳米复合材料粘接的碳纤维增强聚合物(CFRP)搭接剪切接头的焦耳脱粘现象","authors":"","doi":"10.1016/j.compositesa.2024.108535","DOIUrl":null,"url":null,"abstract":"<div><div>The potential of Joule heating CFRPs joints bonded with conductive graphene/epoxy nanocomposites as adhesives for a selective debonding was investigated. To ensure a localized softening of the bondline without altering the adherend’s structure, the epoxy used in the adhesive’s formulation was chosen to have a considerably lower <em>T<sub>g</sub></em> than the adherend. Joule heating the bondline considerably reduced the lap shear strength (LSS) relative to when the test was performed at room temperature, due to thermally induced structural changes promoted in the polymer network, which was consistent with the nanocomposites’ thermomechanical behavior predicted by DMTA. The minimum LSS value was reached in the vicinity of the adhesive’s <em>T<sub>g</sub></em>, allowing an ease deconstruction of the joints. SEM characterization of their fracture surfaces revealed that by controlling the adhesive’s formulation and their Joule heating the joints’ failure mechanism can be tuned to ensure the recovery of undamaged adherends that can be reused.</div></div>","PeriodicalId":282,"journal":{"name":"Composites Part A: Applied Science and Manufacturing","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Joule debonding of carbon reinforced polymer (CFRP) lap shear joints bonded with graphene nanoplatelets (GNPs)/epoxy nanocomposites\",\"authors\":\"\",\"doi\":\"10.1016/j.compositesa.2024.108535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The potential of Joule heating CFRPs joints bonded with conductive graphene/epoxy nanocomposites as adhesives for a selective debonding was investigated. To ensure a localized softening of the bondline without altering the adherend’s structure, the epoxy used in the adhesive’s formulation was chosen to have a considerably lower <em>T<sub>g</sub></em> than the adherend. Joule heating the bondline considerably reduced the lap shear strength (LSS) relative to when the test was performed at room temperature, due to thermally induced structural changes promoted in the polymer network, which was consistent with the nanocomposites’ thermomechanical behavior predicted by DMTA. The minimum LSS value was reached in the vicinity of the adhesive’s <em>T<sub>g</sub></em>, allowing an ease deconstruction of the joints. SEM characterization of their fracture surfaces revealed that by controlling the adhesive’s formulation and their Joule heating the joints’ failure mechanism can be tuned to ensure the recovery of undamaged adherends that can be reused.</div></div>\",\"PeriodicalId\":282,\"journal\":{\"name\":\"Composites Part A: Applied Science and Manufacturing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Part A: Applied Science and Manufacturing\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359835X24005335\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part A: Applied Science and Manufacturing","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359835X24005335","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Joule debonding of carbon reinforced polymer (CFRP) lap shear joints bonded with graphene nanoplatelets (GNPs)/epoxy nanocomposites
The potential of Joule heating CFRPs joints bonded with conductive graphene/epoxy nanocomposites as adhesives for a selective debonding was investigated. To ensure a localized softening of the bondline without altering the adherend’s structure, the epoxy used in the adhesive’s formulation was chosen to have a considerably lower Tg than the adherend. Joule heating the bondline considerably reduced the lap shear strength (LSS) relative to when the test was performed at room temperature, due to thermally induced structural changes promoted in the polymer network, which was consistent with the nanocomposites’ thermomechanical behavior predicted by DMTA. The minimum LSS value was reached in the vicinity of the adhesive’s Tg, allowing an ease deconstruction of the joints. SEM characterization of their fracture surfaces revealed that by controlling the adhesive’s formulation and their Joule heating the joints’ failure mechanism can be tuned to ensure the recovery of undamaged adherends that can be reused.
期刊介绍:
Composites Part A: Applied Science and Manufacturing is a comprehensive journal that publishes original research papers, review articles, case studies, short communications, and letters covering various aspects of composite materials science and technology. This includes fibrous and particulate reinforcements in polymeric, metallic, and ceramic matrices, as well as 'natural' composites like wood and biological materials. The journal addresses topics such as properties, design, and manufacture of reinforcing fibers and particles, novel architectures and concepts, multifunctional composites, advancements in fabrication and processing, manufacturing science, process modeling, experimental mechanics, microstructural characterization, interfaces, prediction and measurement of mechanical, physical, and chemical behavior, and performance in service. Additionally, articles on economic and commercial aspects, design, and case studies are welcomed. All submissions undergo rigorous peer review to ensure they contribute significantly and innovatively, maintaining high standards for content and presentation. The editorial team aims to expedite the review process for prompt publication.