阿克萨赖大学校园制氢用混合可再生能源系统的设计与优化

IF 6.9 2区 环境科学与生态学 Q1 ENGINEERING, CHEMICAL
Hacımurat Demir
{"title":"阿克萨赖大学校园制氢用混合可再生能源系统的设计与优化","authors":"Hacımurat Demir","doi":"10.1016/j.psep.2024.10.080","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, an off-grid HRES is proposed to ensure the electricity demands of the campus in a reliable, cost-effective, and non-polluting way for Aksaray University to have a sustainable and green campus. Within this framework, three HRESs were designed and compared using HOMER Pro software to find the optimum HRES, using a combination of different components related to zero carbon emissions and fully renewable energy sources, including transportation with environmentally friendly hydrogen fuel cell buses for students, academics, and staff. According to the optimization results obtained for the various configurations, the optimum HRES has a net cost of $20.3 million for the 25-year project life, with annual costs of $1.57 million. The levelized cost of electricity of the proposed system, represented by Scenario III, is calculated to be 0.327$/kWh. The PV panels produce 4,758,497 kWh/year at a levelized cost of 0.0404$/kWh, while the wind turbines produce electricity at a levelized cost of 0.0625$/kWh. The optimal system includes a 2000 kW electrolyzer that produces 73,061 kg of hydrogen annually, with a consumption rate of 46.4 kWh/kgH<sub>2</sub>. The hydrogen tank has an energy reserve of 83,333 kWh with a storage capacity of 2500 kg. The results indicate that Scenario III is a robust, cost-effective, and environmentally friendly energy solution for the campus, paving the way for a greener future. Furthermore, the proposed HRES model provides a practical framework that can influence campus energy policies and potentially serves as a model for other educational institutions that are interested in implementing sustainable energy solutions.</div></div>","PeriodicalId":20743,"journal":{"name":"Process Safety and Environmental Protection","volume":"192 ","pages":"Pages 543-556"},"PeriodicalIF":6.9000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and optimization of hybrid renewable energy systems for hydrogen production at Aksaray University campus\",\"authors\":\"Hacımurat Demir\",\"doi\":\"10.1016/j.psep.2024.10.080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, an off-grid HRES is proposed to ensure the electricity demands of the campus in a reliable, cost-effective, and non-polluting way for Aksaray University to have a sustainable and green campus. Within this framework, three HRESs were designed and compared using HOMER Pro software to find the optimum HRES, using a combination of different components related to zero carbon emissions and fully renewable energy sources, including transportation with environmentally friendly hydrogen fuel cell buses for students, academics, and staff. According to the optimization results obtained for the various configurations, the optimum HRES has a net cost of $20.3 million for the 25-year project life, with annual costs of $1.57 million. The levelized cost of electricity of the proposed system, represented by Scenario III, is calculated to be 0.327$/kWh. The PV panels produce 4,758,497 kWh/year at a levelized cost of 0.0404$/kWh, while the wind turbines produce electricity at a levelized cost of 0.0625$/kWh. The optimal system includes a 2000 kW electrolyzer that produces 73,061 kg of hydrogen annually, with a consumption rate of 46.4 kWh/kgH<sub>2</sub>. The hydrogen tank has an energy reserve of 83,333 kWh with a storage capacity of 2500 kg. The results indicate that Scenario III is a robust, cost-effective, and environmentally friendly energy solution for the campus, paving the way for a greener future. Furthermore, the proposed HRES model provides a practical framework that can influence campus energy policies and potentially serves as a model for other educational institutions that are interested in implementing sustainable energy solutions.</div></div>\",\"PeriodicalId\":20743,\"journal\":{\"name\":\"Process Safety and Environmental Protection\",\"volume\":\"192 \",\"pages\":\"Pages 543-556\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Process Safety and Environmental Protection\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0957582024013582\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Process Safety and Environmental Protection","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957582024013582","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种离网 HRES,以可靠、经济、无污染的方式确保校园的电力需求,使阿克萨赖大学成为一个可持续发展的绿色校园。在此框架内,使用 HOMER Pro 软件设计并比较了三种 HRES,以找到最佳的 HRES,将与零碳排放和完全可再生能源相关的不同组件结合使用,包括为学生、学者和教职员工提供环保型氢燃料电池公交车。根据各种配置的优化结果,在 25 年的项目寿命期内,最佳氢能源系统的净成本为 2030 万美元,年成本为 157 万美元。根据计算,以方案 III 为代表的拟议系统的平准化电力成本为 0.327 美元/千瓦时。光伏电池板每年发电 4758497 千瓦时,平准化成本为 0.0404 美元/千瓦时,而风力涡轮机发电的平准化成本为 0.0625 美元/千瓦时。最佳系统包括一个 2000 千瓦的电解槽,年产氢气 73061 千克,消耗率为 46.4 千瓦时/千克氢气。氢气罐的能量储备为 83333 千瓦时,存储容量为 2500 千克。结果表明,方案 III 是一种稳健、经济、环保的校园能源解决方案,为实现更加绿色的未来铺平了道路。此外,建议的 HRES 模型提供了一个实用的框架,可以影响校园能源政策,并有可能成为其他有意实施可持续能源解决方案的教育机构的典范。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and optimization of hybrid renewable energy systems for hydrogen production at Aksaray University campus
In this study, an off-grid HRES is proposed to ensure the electricity demands of the campus in a reliable, cost-effective, and non-polluting way for Aksaray University to have a sustainable and green campus. Within this framework, three HRESs were designed and compared using HOMER Pro software to find the optimum HRES, using a combination of different components related to zero carbon emissions and fully renewable energy sources, including transportation with environmentally friendly hydrogen fuel cell buses for students, academics, and staff. According to the optimization results obtained for the various configurations, the optimum HRES has a net cost of $20.3 million for the 25-year project life, with annual costs of $1.57 million. The levelized cost of electricity of the proposed system, represented by Scenario III, is calculated to be 0.327$/kWh. The PV panels produce 4,758,497 kWh/year at a levelized cost of 0.0404$/kWh, while the wind turbines produce electricity at a levelized cost of 0.0625$/kWh. The optimal system includes a 2000 kW electrolyzer that produces 73,061 kg of hydrogen annually, with a consumption rate of 46.4 kWh/kgH2. The hydrogen tank has an energy reserve of 83,333 kWh with a storage capacity of 2500 kg. The results indicate that Scenario III is a robust, cost-effective, and environmentally friendly energy solution for the campus, paving the way for a greener future. Furthermore, the proposed HRES model provides a practical framework that can influence campus energy policies and potentially serves as a model for other educational institutions that are interested in implementing sustainable energy solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Process Safety and Environmental Protection
Process Safety and Environmental Protection 环境科学-工程:化工
CiteScore
11.40
自引率
15.40%
发文量
929
审稿时长
8.0 months
期刊介绍: The Process Safety and Environmental Protection (PSEP) journal is a leading international publication that focuses on the publication of high-quality, original research papers in the field of engineering, specifically those related to the safety of industrial processes and environmental protection. The journal encourages submissions that present new developments in safety and environmental aspects, particularly those that show how research findings can be applied in process engineering design and practice. PSEP is particularly interested in research that brings fresh perspectives to established engineering principles, identifies unsolved problems, or suggests directions for future research. The journal also values contributions that push the boundaries of traditional engineering and welcomes multidisciplinary papers. PSEP's articles are abstracted and indexed by a range of databases and services, which helps to ensure that the journal's research is accessible and recognized in the academic and professional communities. These databases include ANTE, Chemical Abstracts, Chemical Hazards in Industry, Current Contents, Elsevier Engineering Information database, Pascal Francis, Web of Science, Scopus, Engineering Information Database EnCompass LIT (Elsevier), and INSPEC. This wide coverage facilitates the dissemination of the journal's content to a global audience interested in process safety and environmental engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信