{"title":"道路施工区安全事故报警系统性能评估","authors":"Qishen Ye, Yihai Fang, Nan Zheng","doi":"10.1016/j.autcon.2024.105837","DOIUrl":null,"url":null,"abstract":"<div><div>Road work zones pose significant safety risks to both vehicles passing by and the construction workers moving within the work zones. Over recent years, significant research efforts have been dedicated to work zone safety, particularly by leveraging emerging technologies. This paper aims to review the literature on performance evaluation of safety technologies designed to mitigate struck-by hazards. This review identified 57 relevant publications focusing on technology evaluation, which were critically reviewed using the Four-component Cyber-Physical System (CPS) hierarchy and the Adapted Layer of Protection Analysis (ALOPA) framework. The CPS hierarchy-based review unveiled the focused components under evaluation, the relationship among these components, the methodologies employed, and the key performance results. The extent and completeness of the evaluation methods were examined through the ALOPA framework. The findings of this research highlight emerging trends that explore the impact of human factors on accident avoidance outcomes in risk-free virtual environments and suggest several prospective considerations as per ALOPA that can guide future research towards performance-based evaluations and design optimisations.</div></div>","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"168 ","pages":"Article 105837"},"PeriodicalIF":9.6000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance evaluation of struck-by-accident alert systems for road work zone safety\",\"authors\":\"Qishen Ye, Yihai Fang, Nan Zheng\",\"doi\":\"10.1016/j.autcon.2024.105837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Road work zones pose significant safety risks to both vehicles passing by and the construction workers moving within the work zones. Over recent years, significant research efforts have been dedicated to work zone safety, particularly by leveraging emerging technologies. This paper aims to review the literature on performance evaluation of safety technologies designed to mitigate struck-by hazards. This review identified 57 relevant publications focusing on technology evaluation, which were critically reviewed using the Four-component Cyber-Physical System (CPS) hierarchy and the Adapted Layer of Protection Analysis (ALOPA) framework. The CPS hierarchy-based review unveiled the focused components under evaluation, the relationship among these components, the methodologies employed, and the key performance results. The extent and completeness of the evaluation methods were examined through the ALOPA framework. The findings of this research highlight emerging trends that explore the impact of human factors on accident avoidance outcomes in risk-free virtual environments and suggest several prospective considerations as per ALOPA that can guide future research towards performance-based evaluations and design optimisations.</div></div>\",\"PeriodicalId\":8660,\"journal\":{\"name\":\"Automation in Construction\",\"volume\":\"168 \",\"pages\":\"Article 105837\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automation in Construction\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926580524005739\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926580524005739","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Performance evaluation of struck-by-accident alert systems for road work zone safety
Road work zones pose significant safety risks to both vehicles passing by and the construction workers moving within the work zones. Over recent years, significant research efforts have been dedicated to work zone safety, particularly by leveraging emerging technologies. This paper aims to review the literature on performance evaluation of safety technologies designed to mitigate struck-by hazards. This review identified 57 relevant publications focusing on technology evaluation, which were critically reviewed using the Four-component Cyber-Physical System (CPS) hierarchy and the Adapted Layer of Protection Analysis (ALOPA) framework. The CPS hierarchy-based review unveiled the focused components under evaluation, the relationship among these components, the methodologies employed, and the key performance results. The extent and completeness of the evaluation methods were examined through the ALOPA framework. The findings of this research highlight emerging trends that explore the impact of human factors on accident avoidance outcomes in risk-free virtual environments and suggest several prospective considerations as per ALOPA that can guide future research towards performance-based evaluations and design optimisations.
期刊介绍:
Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities.
The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.