Shengli Li , Shiji Sun , Yang Liu , Wanshuai Qi , Nan Jiang , Can Cui , Pengfei Zheng
{"title":"通过红外热成像检测外部后张法管道灌浆缺陷的实时轻量级 YOLO 模型","authors":"Shengli Li , Shiji Sun , Yang Liu , Wanshuai Qi , Nan Jiang , Can Cui , Pengfei Zheng","doi":"10.1016/j.autcon.2024.105830","DOIUrl":null,"url":null,"abstract":"<div><div>It is challenging to distinguish the defective areas using infrared thermography to automatically analyze external post-tensioned tendon duct grouting defects. To achieve efficient and stable automated detection, a lightweight real-time grouting defects detection method based on YOLO deep learning is proposed. Firstly, the Cutpaste data augmentation method was used to effectively alleviate the problem of overfitting. Then, the C3Ghost module was introduced into the neck network, and the number of channels in the network layers was adjusted to 50 % of those in the YOLOv5s model, reducing the number of parameters and computational resources. Finally, the SGD optimizer and GIOU loss function, as well as the Sim attention module, were used to improve detection accuracy. Based on instance analysis and comparison, this method achieves [email protected] of 96.9 % and detection speed of 66FPS. Compared with YOLOv5s, it reduces the number of parameters by 79 % and FLOPs by 77 %.</div></div>","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"168 ","pages":"Article 105830"},"PeriodicalIF":9.6000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-time lightweight YOLO model for grouting defect detection in external post-tensioned ducts via infrared thermography\",\"authors\":\"Shengli Li , Shiji Sun , Yang Liu , Wanshuai Qi , Nan Jiang , Can Cui , Pengfei Zheng\",\"doi\":\"10.1016/j.autcon.2024.105830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>It is challenging to distinguish the defective areas using infrared thermography to automatically analyze external post-tensioned tendon duct grouting defects. To achieve efficient and stable automated detection, a lightweight real-time grouting defects detection method based on YOLO deep learning is proposed. Firstly, the Cutpaste data augmentation method was used to effectively alleviate the problem of overfitting. Then, the C3Ghost module was introduced into the neck network, and the number of channels in the network layers was adjusted to 50 % of those in the YOLOv5s model, reducing the number of parameters and computational resources. Finally, the SGD optimizer and GIOU loss function, as well as the Sim attention module, were used to improve detection accuracy. Based on instance analysis and comparison, this method achieves [email protected] of 96.9 % and detection speed of 66FPS. Compared with YOLOv5s, it reduces the number of parameters by 79 % and FLOPs by 77 %.</div></div>\",\"PeriodicalId\":8660,\"journal\":{\"name\":\"Automation in Construction\",\"volume\":\"168 \",\"pages\":\"Article 105830\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automation in Construction\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926580524005661\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926580524005661","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Real-time lightweight YOLO model for grouting defect detection in external post-tensioned ducts via infrared thermography
It is challenging to distinguish the defective areas using infrared thermography to automatically analyze external post-tensioned tendon duct grouting defects. To achieve efficient and stable automated detection, a lightweight real-time grouting defects detection method based on YOLO deep learning is proposed. Firstly, the Cutpaste data augmentation method was used to effectively alleviate the problem of overfitting. Then, the C3Ghost module was introduced into the neck network, and the number of channels in the network layers was adjusted to 50 % of those in the YOLOv5s model, reducing the number of parameters and computational resources. Finally, the SGD optimizer and GIOU loss function, as well as the Sim attention module, were used to improve detection accuracy. Based on instance analysis and comparison, this method achieves [email protected] of 96.9 % and detection speed of 66FPS. Compared with YOLOv5s, it reduces the number of parameters by 79 % and FLOPs by 77 %.
期刊介绍:
Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities.
The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.