Lele Wang, Qian Wang, Peiru Lv, Zhen Peng, Jingshuai Yang
{"title":"用于高性能高温聚合物电解质膜燃料电池的聚(三联苯-共二苯并-18-冠-6 甲基咪唑)共聚物的合成","authors":"Lele Wang, Qian Wang, Peiru Lv, Zhen Peng, Jingshuai Yang","doi":"10.1016/j.memsci.2024.123416","DOIUrl":null,"url":null,"abstract":"<div><div>This study focuses on the development of high temperature polymer electrolyte membranes (HT-PEMs), which are essential components for HT-PEM fuel cells (HT-PEMFCs). While phosphoric acid (PA) doped polybenzimidazole (PBI) has been recognized as a successful HT-PEM, it faces several challenges, including the use of carcinogenic monomer, complex synthesis processes, and poor solubility in organic solvents. To produce more cost-effective, easily synthesized, and high-performance alternatives, this study utilizes a straightforward superacid-catalyzed Friedel-Crafts reaction to synthesize a series of poly(terphenyl-<em>co</em>-dibenzo-18-crown-6 methylimidazole) copolymers, referred to as Co-<em>x</em>%TP-<em>y</em>%CE-Im, using <em>p</em>-terphenyl, dibenzo-18-crown-6 and 1-methyl-1H-imidazole-2-formaldehyde as monomers. The copolymerized hydrophilic and bulky crown ether units introduce substantial free volume and multiple interaction sites with PA molecules, as indicated by theoretical calculations. Additionally, the formation of microphase separation structures, confirmed by atomic force microscope (AFM) and transmission electron microscope (TEM), contributes to the enhanced performance of these membranes. For instance, after immersion in 85 wt% and 75 wt% PA solutions, the Co-90%TP-10%CE membrane achieves PA doping contents of 200 % and 169 %, achieving high conductivities of 0.092 S cm<sup>−1</sup> and 0.054 S cm<sup>−1</sup> at 180 °C, while maintaining tensile strengths of 6.5 MPa and 7.5 MPa at room temperature. Without the need for humidification or backpressure, the peak power density of an H<sub>2</sub>-O<sub>2</sub> cell equipped with Co-90%TP-10%CE/169%PA membrane with a thickness of 79 μm reaches an impressive 1018 mW cm<sup>−2</sup> at 210 °C. These results demonstrate new materials and insights for the development of high-performance HT-PEMs.</div></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":"714 ","pages":"Article 123416"},"PeriodicalIF":8.4000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of poly(terphenyl-co-dibenzo-18-crown-6 methylimidazole) copolymers for high-performance high temperature polymer electrolyte membrane fuel cells\",\"authors\":\"Lele Wang, Qian Wang, Peiru Lv, Zhen Peng, Jingshuai Yang\",\"doi\":\"10.1016/j.memsci.2024.123416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study focuses on the development of high temperature polymer electrolyte membranes (HT-PEMs), which are essential components for HT-PEM fuel cells (HT-PEMFCs). While phosphoric acid (PA) doped polybenzimidazole (PBI) has been recognized as a successful HT-PEM, it faces several challenges, including the use of carcinogenic monomer, complex synthesis processes, and poor solubility in organic solvents. To produce more cost-effective, easily synthesized, and high-performance alternatives, this study utilizes a straightforward superacid-catalyzed Friedel-Crafts reaction to synthesize a series of poly(terphenyl-<em>co</em>-dibenzo-18-crown-6 methylimidazole) copolymers, referred to as Co-<em>x</em>%TP-<em>y</em>%CE-Im, using <em>p</em>-terphenyl, dibenzo-18-crown-6 and 1-methyl-1H-imidazole-2-formaldehyde as monomers. The copolymerized hydrophilic and bulky crown ether units introduce substantial free volume and multiple interaction sites with PA molecules, as indicated by theoretical calculations. Additionally, the formation of microphase separation structures, confirmed by atomic force microscope (AFM) and transmission electron microscope (TEM), contributes to the enhanced performance of these membranes. For instance, after immersion in 85 wt% and 75 wt% PA solutions, the Co-90%TP-10%CE membrane achieves PA doping contents of 200 % and 169 %, achieving high conductivities of 0.092 S cm<sup>−1</sup> and 0.054 S cm<sup>−1</sup> at 180 °C, while maintaining tensile strengths of 6.5 MPa and 7.5 MPa at room temperature. Without the need for humidification or backpressure, the peak power density of an H<sub>2</sub>-O<sub>2</sub> cell equipped with Co-90%TP-10%CE/169%PA membrane with a thickness of 79 μm reaches an impressive 1018 mW cm<sup>−2</sup> at 210 °C. These results demonstrate new materials and insights for the development of high-performance HT-PEMs.</div></div>\",\"PeriodicalId\":368,\"journal\":{\"name\":\"Journal of Membrane Science\",\"volume\":\"714 \",\"pages\":\"Article 123416\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Membrane Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S037673882401010X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037673882401010X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
摘要
本研究的重点是高温聚合物电解质膜(HT-PEM)的开发,它是高温聚合物电解质燃料电池(HT-PEMFC)的重要组成部分。虽然掺杂磷酸(PA)的聚苯并咪唑(PBI)已被公认为是一种成功的高温聚合物电解质膜,但它也面临着一些挑战,包括使用致癌单体、复杂的合成工艺以及在有机溶剂中溶解性差等。为了生产出更具成本效益、更易合成和更高性能的替代品,本研究利用简单的超酸催化 Friedel-Crafts 反应,以对三联苯、二苯并-18-冠醚-6 和 1-甲基-1H-咪唑-2-甲醛为单体,合成了一系列聚(三联苯-共二苯并-18-冠醚-6 甲基咪唑)共聚物,称为 Co-x%TP-y%CE-Im。理论计算表明,共聚的亲水性和大体积冠醚单元引入了大量的自由体积以及与 PA 分子的多个相互作用位点。此外,经原子力显微镜(AFM)和透射电子显微镜(TEM)证实,微相分离结构的形成也有助于提高这些膜的性能。例如,在 85 wt% 和 75 wt% PA 溶液中浸泡后,Co-90%TP-10%CE 膜的 PA 掺杂含量分别达到 200 % 和 169 %,在 180 °C 时分别达到 0.092 S cm-1 和 0.054 S cm-1 的高电导率,同时在室温下保持 6.5 MPa 和 7.5 MPa 的抗拉强度。无需加湿或背压,配备了厚度为 79 μm 的 Co-90%TP-10%CE/169%PA 膜的 H2-O2 电池在 210 °C 时的峰值功率密度达到了惊人的 1018 mW cm-2。这些结果展示了开发高性能 HT-PEM 的新材料和新见解。
Synthesis of poly(terphenyl-co-dibenzo-18-crown-6 methylimidazole) copolymers for high-performance high temperature polymer electrolyte membrane fuel cells
This study focuses on the development of high temperature polymer electrolyte membranes (HT-PEMs), which are essential components for HT-PEM fuel cells (HT-PEMFCs). While phosphoric acid (PA) doped polybenzimidazole (PBI) has been recognized as a successful HT-PEM, it faces several challenges, including the use of carcinogenic monomer, complex synthesis processes, and poor solubility in organic solvents. To produce more cost-effective, easily synthesized, and high-performance alternatives, this study utilizes a straightforward superacid-catalyzed Friedel-Crafts reaction to synthesize a series of poly(terphenyl-co-dibenzo-18-crown-6 methylimidazole) copolymers, referred to as Co-x%TP-y%CE-Im, using p-terphenyl, dibenzo-18-crown-6 and 1-methyl-1H-imidazole-2-formaldehyde as monomers. The copolymerized hydrophilic and bulky crown ether units introduce substantial free volume and multiple interaction sites with PA molecules, as indicated by theoretical calculations. Additionally, the formation of microphase separation structures, confirmed by atomic force microscope (AFM) and transmission electron microscope (TEM), contributes to the enhanced performance of these membranes. For instance, after immersion in 85 wt% and 75 wt% PA solutions, the Co-90%TP-10%CE membrane achieves PA doping contents of 200 % and 169 %, achieving high conductivities of 0.092 S cm−1 and 0.054 S cm−1 at 180 °C, while maintaining tensile strengths of 6.5 MPa and 7.5 MPa at room temperature. Without the need for humidification or backpressure, the peak power density of an H2-O2 cell equipped with Co-90%TP-10%CE/169%PA membrane with a thickness of 79 μm reaches an impressive 1018 mW cm−2 at 210 °C. These results demonstrate new materials and insights for the development of high-performance HT-PEMs.
期刊介绍:
The Journal of Membrane Science is a publication that focuses on membrane systems and is aimed at academic and industrial chemists, chemical engineers, materials scientists, and membranologists. It publishes original research and reviews on various aspects of membrane transport, membrane formation/structure, fouling, module/process design, and processes/applications. The journal primarily focuses on the structure, function, and performance of non-biological membranes but also includes papers that relate to biological membranes. The Journal of Membrane Science publishes Full Text Papers, State-of-the-Art Reviews, Letters to the Editor, and Perspectives.