服部子空间

IF 0.6 4区 数学 Q3 MATHEMATICS
Angel Calderón-Villalobos , Iván Sánchez
{"title":"服部子空间","authors":"Angel Calderón-Villalobos ,&nbsp;Iván Sánchez","doi":"10.1016/j.topol.2024.109077","DOIUrl":null,"url":null,"abstract":"<div><div>For a subset <em>A</em> of an almost topological group <span><math><mo>(</mo><mi>G</mi><mo>,</mo><mi>τ</mi><mo>)</mo></math></span>, the Hattori space <span><math><mi>H</mi><mo>(</mo><mi>A</mi><mo>)</mo></math></span> is a topological space whose underlying set is <em>G</em> and whose topology <span><math><mi>τ</mi><mo>(</mo><mi>A</mi><mo>)</mo></math></span> is defined as follows: if <span><math><mi>x</mi><mo>∈</mo><mi>A</mi></math></span> (respectively, <span><math><mi>x</mi><mo>∉</mo><mi>A</mi></math></span>), then the neighborhoods of <em>x</em> in <span><math><mi>H</mi><mo>(</mo><mi>A</mi><mo>)</mo></math></span> are the same neighborhoods of <em>x</em> in the reflection group <span><math><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mo>⁎</mo></mrow></msub><mo>,</mo><msub><mrow><mi>τ</mi></mrow><mrow><mo>⁎</mo></mrow></msub><mo>)</mo></math></span> (respectively, <span><math><mo>(</mo><mi>G</mi><mo>,</mo><mi>τ</mi><mo>)</mo></math></span>). Given an infinite subset <em>X</em> of an almost topological group <em>G</em> and <span><math><mi>A</mi><mo>⊆</mo><mi>X</mi></math></span>, we denote by <span><math><mi>X</mi><mo>(</mo><mi>A</mi><mo>)</mo></math></span>, <span><math><msub><mrow><mi>X</mi></mrow><mrow><mo>⁎</mo></mrow></msub></math></span> and <em>X</em> to the spaces <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mi>τ</mi><mo>(</mo><mi>A</mi><mo>)</mo><msub><mrow><mo>|</mo></mrow><mrow><mi>X</mi></mrow></msub><mo>)</mo></math></span>, <span><math><mo>(</mo><mi>X</mi><mo>,</mo><msub><mrow><mi>τ</mi></mrow><mrow><mo>⁎</mo></mrow></msub><msub><mrow><mo>|</mo></mrow><mrow><mi>X</mi></mrow></msub><mo>)</mo></math></span> and <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mi>τ</mi><msub><mrow><mo>|</mo></mrow><mrow><mi>X</mi></mrow></msub><mo>)</mo></math></span>, respectively. We say that <span><math><mi>X</mi><mo>(</mo><mi>A</mi><mo>)</mo></math></span> is the Hattori subspace associated to <em>A</em>. In this paper, we obtain information about Hattori subspaces. We show that some known topological spaces can be obtained as Hattori subspaces of some almost topological groups.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"357 ","pages":"Article 109077"},"PeriodicalIF":0.6000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hattori subspaces\",\"authors\":\"Angel Calderón-Villalobos ,&nbsp;Iván Sánchez\",\"doi\":\"10.1016/j.topol.2024.109077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For a subset <em>A</em> of an almost topological group <span><math><mo>(</mo><mi>G</mi><mo>,</mo><mi>τ</mi><mo>)</mo></math></span>, the Hattori space <span><math><mi>H</mi><mo>(</mo><mi>A</mi><mo>)</mo></math></span> is a topological space whose underlying set is <em>G</em> and whose topology <span><math><mi>τ</mi><mo>(</mo><mi>A</mi><mo>)</mo></math></span> is defined as follows: if <span><math><mi>x</mi><mo>∈</mo><mi>A</mi></math></span> (respectively, <span><math><mi>x</mi><mo>∉</mo><mi>A</mi></math></span>), then the neighborhoods of <em>x</em> in <span><math><mi>H</mi><mo>(</mo><mi>A</mi><mo>)</mo></math></span> are the same neighborhoods of <em>x</em> in the reflection group <span><math><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mo>⁎</mo></mrow></msub><mo>,</mo><msub><mrow><mi>τ</mi></mrow><mrow><mo>⁎</mo></mrow></msub><mo>)</mo></math></span> (respectively, <span><math><mo>(</mo><mi>G</mi><mo>,</mo><mi>τ</mi><mo>)</mo></math></span>). Given an infinite subset <em>X</em> of an almost topological group <em>G</em> and <span><math><mi>A</mi><mo>⊆</mo><mi>X</mi></math></span>, we denote by <span><math><mi>X</mi><mo>(</mo><mi>A</mi><mo>)</mo></math></span>, <span><math><msub><mrow><mi>X</mi></mrow><mrow><mo>⁎</mo></mrow></msub></math></span> and <em>X</em> to the spaces <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mi>τ</mi><mo>(</mo><mi>A</mi><mo>)</mo><msub><mrow><mo>|</mo></mrow><mrow><mi>X</mi></mrow></msub><mo>)</mo></math></span>, <span><math><mo>(</mo><mi>X</mi><mo>,</mo><msub><mrow><mi>τ</mi></mrow><mrow><mo>⁎</mo></mrow></msub><msub><mrow><mo>|</mo></mrow><mrow><mi>X</mi></mrow></msub><mo>)</mo></math></span> and <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mi>τ</mi><msub><mrow><mo>|</mo></mrow><mrow><mi>X</mi></mrow></msub><mo>)</mo></math></span>, respectively. We say that <span><math><mi>X</mi><mo>(</mo><mi>A</mi><mo>)</mo></math></span> is the Hattori subspace associated to <em>A</em>. In this paper, we obtain information about Hattori subspaces. We show that some known topological spaces can be obtained as Hattori subspaces of some almost topological groups.</div></div>\",\"PeriodicalId\":51201,\"journal\":{\"name\":\"Topology and its Applications\",\"volume\":\"357 \",\"pages\":\"Article 109077\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166864124002621\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166864124002621","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于一个几乎拓扑群(G,τ)的子集 A,服部空间 H(A) 是一个拓扑空间,其底层集是 G,其拓扑 τ(A) 的定义如下:如果 x∈A(分别为 x∉A),那么 x 在 H(A) 中的邻域就是 x 在反射群(G⁎,τ⁎)(分别为 (G,τ))中的邻域。给定几乎拓扑群 G 的无限子集 X 和 A⊆X,我们分别用 X(A)、X⁎ 和 X 表示空间 (X,τ(A)|X)、(X,τ⁎|X) 和 (X,τ|X)。我们说 X(A) 是与 A 相关联的服部子空间。我们证明,一些已知的拓扑空间可以作为一些近似拓扑群的服部子空间得到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hattori subspaces
For a subset A of an almost topological group (G,τ), the Hattori space H(A) is a topological space whose underlying set is G and whose topology τ(A) is defined as follows: if xA (respectively, xA), then the neighborhoods of x in H(A) are the same neighborhoods of x in the reflection group (G,τ) (respectively, (G,τ)). Given an infinite subset X of an almost topological group G and AX, we denote by X(A), X and X to the spaces (X,τ(A)|X), (X,τ|X) and (X,τ|X), respectively. We say that X(A) is the Hattori subspace associated to A. In this paper, we obtain information about Hattori subspaces. We show that some known topological spaces can be obtained as Hattori subspaces of some almost topological groups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
33.30%
发文量
251
审稿时长
6 months
期刊介绍: Topology and its Applications is primarily concerned with publishing original research papers of moderate length. However, a limited number of carefully selected survey or expository papers are also included. The mathematical focus of the journal is that suggested by the title: Research in Topology. It is felt that it is inadvisable to attempt a definitive description of topology as understood for this journal. Certainly the subject includes the algebraic, general, geometric, and set-theoretic facets of topology as well as areas of interactions between topology and other mathematical disciplines, e.g. topological algebra, topological dynamics, functional analysis, category theory. Since the roles of various aspects of topology continue to change, the non-specific delineation of topics serves to reflect the current state of research in topology. At regular intervals, the journal publishes a section entitled Open Problems in Topology, edited by J. van Mill and G.M. Reed. This is a status report on the 1100 problems listed in the book of the same name published by North-Holland in 1990, edited by van Mill and Reed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信