{"title":"从玉米芯中合成糠基羟甲基酮的单锅化学生物学级联策略","authors":"","doi":"10.1016/j.indcrop.2024.119892","DOIUrl":null,"url":null,"abstract":"<div><div>Furyl hydroxymethyl ketone (FHK) is essential in synthesizing pharmaceuticals and biologically active molecules. However, green and sustainable methods for synthesizing FHK from renewable feedstocks remain challenging. This research proposed a simple one-pot chemobiocatalytic cascade strategy for effectually transforming renewable biomass into FHK via solid acid catalysis and whole-cells hydroxymethylation. Using whole-cells (SMPDC cells) containing pyruvate decarboxylase and small ubiquitin-like modifier (SUMO) fusion tag as biocatalysts, non-natural substrates furfural and formaldehyde were introduced into a C-C ligation bioreaction, establishing a biocatalytic pathway for FHK synthesis. SMPDC cells exhibited excellent biocatalytic activity and high tolerance to high furfural concentrations (up to 200 mM), a well-known effective microbial inhibitor. Optimal reaction conditions were identified, enabling the manufacturing of FHK from corncob- and <em>D</em>-xylose-derived furfural with productivities of 0.12 g FHK/(1 g corncob + 0.09 g HCHO) and 0.39 g FHK/(1 g <em>D</em>-xylose + 0.28 g HCHO), respectively. This strategy demonstrated the potential for synthesizing valuable chemicals from low-cost biomass, providing a sustainable alternative to traditional chemical synthesis.</div></div>","PeriodicalId":13581,"journal":{"name":"Industrial Crops and Products","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"One-pot chemobiological cascade strategy for synthesizing furyl hydroxymethyl ketone from corncob\",\"authors\":\"\",\"doi\":\"10.1016/j.indcrop.2024.119892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Furyl hydroxymethyl ketone (FHK) is essential in synthesizing pharmaceuticals and biologically active molecules. However, green and sustainable methods for synthesizing FHK from renewable feedstocks remain challenging. This research proposed a simple one-pot chemobiocatalytic cascade strategy for effectually transforming renewable biomass into FHK via solid acid catalysis and whole-cells hydroxymethylation. Using whole-cells (SMPDC cells) containing pyruvate decarboxylase and small ubiquitin-like modifier (SUMO) fusion tag as biocatalysts, non-natural substrates furfural and formaldehyde were introduced into a C-C ligation bioreaction, establishing a biocatalytic pathway for FHK synthesis. SMPDC cells exhibited excellent biocatalytic activity and high tolerance to high furfural concentrations (up to 200 mM), a well-known effective microbial inhibitor. Optimal reaction conditions were identified, enabling the manufacturing of FHK from corncob- and <em>D</em>-xylose-derived furfural with productivities of 0.12 g FHK/(1 g corncob + 0.09 g HCHO) and 0.39 g FHK/(1 g <em>D</em>-xylose + 0.28 g HCHO), respectively. This strategy demonstrated the potential for synthesizing valuable chemicals from low-cost biomass, providing a sustainable alternative to traditional chemical synthesis.</div></div>\",\"PeriodicalId\":13581,\"journal\":{\"name\":\"Industrial Crops and Products\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial Crops and Products\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926669024018697\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Crops and Products","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926669024018697","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
摘要
糠基羟甲基酮(FHK)是合成药物和生物活性分子的重要原料。然而,利用可再生原料合成 FHK 的绿色和可持续方法仍具有挑战性。本研究提出了一种简单的单锅化学生物催化级联策略,通过固体酸催化和全细胞羟甲基化将可再生生物质有效转化为 FHK。利用含有丙酮酸脱羧酶和小泛素样修饰符(SUMO)融合标签的全细胞(SMPDC细胞)作为生物催化剂,将非天然底物糠醛和甲醛引入C-C连接生物反应,建立了FHK合成的生物催化途径。SMPDC 细胞表现出卓越的生物催化活性和对高浓度糠醛(高达 200 mM)的高耐受性,而糠醛是一种众所周知的有效微生物抑制剂。最佳反应条件已经确定,可以从玉米芯和二木糖衍生的糠醛中生产出 FHK,生产率分别为 0.12 g FHK/(1 g 玉米芯 + 0.09 g HCHO) 和 0.39 g FHK/(1 g 二木糖 + 0.28 g HCHO)。这一策略证明了从低成本生物质中合成有价值化学品的潜力,为传统化学合成提供了一种可持续的替代方法。
One-pot chemobiological cascade strategy for synthesizing furyl hydroxymethyl ketone from corncob
Furyl hydroxymethyl ketone (FHK) is essential in synthesizing pharmaceuticals and biologically active molecules. However, green and sustainable methods for synthesizing FHK from renewable feedstocks remain challenging. This research proposed a simple one-pot chemobiocatalytic cascade strategy for effectually transforming renewable biomass into FHK via solid acid catalysis and whole-cells hydroxymethylation. Using whole-cells (SMPDC cells) containing pyruvate decarboxylase and small ubiquitin-like modifier (SUMO) fusion tag as biocatalysts, non-natural substrates furfural and formaldehyde were introduced into a C-C ligation bioreaction, establishing a biocatalytic pathway for FHK synthesis. SMPDC cells exhibited excellent biocatalytic activity and high tolerance to high furfural concentrations (up to 200 mM), a well-known effective microbial inhibitor. Optimal reaction conditions were identified, enabling the manufacturing of FHK from corncob- and D-xylose-derived furfural with productivities of 0.12 g FHK/(1 g corncob + 0.09 g HCHO) and 0.39 g FHK/(1 g D-xylose + 0.28 g HCHO), respectively. This strategy demonstrated the potential for synthesizing valuable chemicals from low-cost biomass, providing a sustainable alternative to traditional chemical synthesis.
期刊介绍:
Industrial Crops and Products is an International Journal publishing academic and industrial research on industrial (defined as non-food/non-feed) crops and products. Papers concern both crop-oriented and bio-based materials from crops-oriented research, and should be of interest to an international audience, hypothesis driven, and where comparisons are made statistics performed.