{"title":"确定中国河西走廊典型山区河水时空变化的主要驱动因素","authors":"","doi":"10.1016/j.ejrh.2024.102024","DOIUrl":null,"url":null,"abstract":"<div><h3>Study region</h3><div>Typical mountain areas in the Hexi Corridor, China.</div></div><div><h3>Study focus</h3><div>Water security and ecosystem sustainability of arid inland river basins are highly dependent on upstream streamflow. However, due to the complex geographical environment and limited observation data in the study region, the attribution of spatiotemporal variations in streamflow influenced by climate change and/or human activities remains unclear. Here, we used partial least squares regression (PLSR) and the Budyko framework to unravel the dominant drivers of spatiotemporal variation in streamflow over the past 30 yr.</div></div><div><h3>New hydrological insight for the region</h3><div>Precipitation, topographic wetness index, slope, forest land, gross primary productivity, hydrological connectivity, soil organic carbon content, silt content, relative relief, <em>NDVI</em> and gravel content dominated spatial variation in streamflow. Temporal variation of streamflow was sensitive to precipitation and land surface. Specifically, increased precipitation and land surface alteration dominated the increase in streamflow in 50 % of the watersheds and the decrease in streamflow in 33 % of them, respectively. Further, land surface alteration was dominated by expansion of agricultural and built-up areas, weakened hydrological connectivity, increased landscape aggregation and forest cover. Controlling agricultural and built-up areas and the scale of afforestation, and focusing on the dynamics of hydrological connectivity and landscape patterns in the upstream reaches are imperative to maintain the security and sustainability of water resources in the arid inland river basins.</div></div>","PeriodicalId":48620,"journal":{"name":"Journal of Hydrology-Regional Studies","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of dominant drivers of streamflow spatiotemporal variations in typical mountainous areas in the Hexi Corridor, China\",\"authors\":\"\",\"doi\":\"10.1016/j.ejrh.2024.102024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Study region</h3><div>Typical mountain areas in the Hexi Corridor, China.</div></div><div><h3>Study focus</h3><div>Water security and ecosystem sustainability of arid inland river basins are highly dependent on upstream streamflow. However, due to the complex geographical environment and limited observation data in the study region, the attribution of spatiotemporal variations in streamflow influenced by climate change and/or human activities remains unclear. Here, we used partial least squares regression (PLSR) and the Budyko framework to unravel the dominant drivers of spatiotemporal variation in streamflow over the past 30 yr.</div></div><div><h3>New hydrological insight for the region</h3><div>Precipitation, topographic wetness index, slope, forest land, gross primary productivity, hydrological connectivity, soil organic carbon content, silt content, relative relief, <em>NDVI</em> and gravel content dominated spatial variation in streamflow. Temporal variation of streamflow was sensitive to precipitation and land surface. Specifically, increased precipitation and land surface alteration dominated the increase in streamflow in 50 % of the watersheds and the decrease in streamflow in 33 % of them, respectively. Further, land surface alteration was dominated by expansion of agricultural and built-up areas, weakened hydrological connectivity, increased landscape aggregation and forest cover. Controlling agricultural and built-up areas and the scale of afforestation, and focusing on the dynamics of hydrological connectivity and landscape patterns in the upstream reaches are imperative to maintain the security and sustainability of water resources in the arid inland river basins.</div></div>\",\"PeriodicalId\":48620,\"journal\":{\"name\":\"Journal of Hydrology-Regional Studies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydrology-Regional Studies\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214581824003732\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology-Regional Studies","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214581824003732","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Identification of dominant drivers of streamflow spatiotemporal variations in typical mountainous areas in the Hexi Corridor, China
Study region
Typical mountain areas in the Hexi Corridor, China.
Study focus
Water security and ecosystem sustainability of arid inland river basins are highly dependent on upstream streamflow. However, due to the complex geographical environment and limited observation data in the study region, the attribution of spatiotemporal variations in streamflow influenced by climate change and/or human activities remains unclear. Here, we used partial least squares regression (PLSR) and the Budyko framework to unravel the dominant drivers of spatiotemporal variation in streamflow over the past 30 yr.
New hydrological insight for the region
Precipitation, topographic wetness index, slope, forest land, gross primary productivity, hydrological connectivity, soil organic carbon content, silt content, relative relief, NDVI and gravel content dominated spatial variation in streamflow. Temporal variation of streamflow was sensitive to precipitation and land surface. Specifically, increased precipitation and land surface alteration dominated the increase in streamflow in 50 % of the watersheds and the decrease in streamflow in 33 % of them, respectively. Further, land surface alteration was dominated by expansion of agricultural and built-up areas, weakened hydrological connectivity, increased landscape aggregation and forest cover. Controlling agricultural and built-up areas and the scale of afforestation, and focusing on the dynamics of hydrological connectivity and landscape patterns in the upstream reaches are imperative to maintain the security and sustainability of water resources in the arid inland river basins.
期刊介绍:
Journal of Hydrology: Regional Studies publishes original research papers enhancing the science of hydrology and aiming at region-specific problems, past and future conditions, analysis, review and solutions. The journal particularly welcomes research papers that deliver new insights into region-specific hydrological processes and responses to changing conditions, as well as contributions that incorporate interdisciplinarity and translational science.