{"title":"通过短流程技术实现 TiB/metastable-β 复合材料的超高强度","authors":"","doi":"10.1016/j.compositesa.2024.108522","DOIUrl":null,"url":null,"abstract":"<div><div>Lightweight titanium alloys with ultra-high strength and reasonable ductility are desirable for aerospace applications. However, titanium alloys typically require cumbersome heat treatment to achieve excellent mechanical properties. Here, ultra-high strength Ti-55531-based composites were fabricated by introducing TiB whiskers using a short process, i.e. melting and isothermal forging. The microstructure evolution during isothermal forging was investigated, TiB whiskers would promote the discontinuous dynamic recrystallization and impede abnormal grain growth, resulting in significant β grain refinement, equiaxialization, and crystal orientation randomization. In addition, uniformly distributed nano-scaled α<sub>s</sub> lamellae were formed. 2.5 vol% TiB/Ti-55531 achieved a superior strength-plasticity synergy with the ultra-high strength of 1525 ± 4 MPa and elongation of 6.4 %±0.2 %, which were 9.2 % and 12.3 % higher than that of Ti-55531, respectively. The strengthening mechanisms were thoroughly analyzed, providing further insight to simplify the preparation and advance the application of ultra-high strength TMCs via short-process technology.</div></div>","PeriodicalId":282,"journal":{"name":"Composites Part A: Applied Science and Manufacturing","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Achieving ultra-high strength in TiB/metastable-β composites via short-process technology\",\"authors\":\"\",\"doi\":\"10.1016/j.compositesa.2024.108522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Lightweight titanium alloys with ultra-high strength and reasonable ductility are desirable for aerospace applications. However, titanium alloys typically require cumbersome heat treatment to achieve excellent mechanical properties. Here, ultra-high strength Ti-55531-based composites were fabricated by introducing TiB whiskers using a short process, i.e. melting and isothermal forging. The microstructure evolution during isothermal forging was investigated, TiB whiskers would promote the discontinuous dynamic recrystallization and impede abnormal grain growth, resulting in significant β grain refinement, equiaxialization, and crystal orientation randomization. In addition, uniformly distributed nano-scaled α<sub>s</sub> lamellae were formed. 2.5 vol% TiB/Ti-55531 achieved a superior strength-plasticity synergy with the ultra-high strength of 1525 ± 4 MPa and elongation of 6.4 %±0.2 %, which were 9.2 % and 12.3 % higher than that of Ti-55531, respectively. The strengthening mechanisms were thoroughly analyzed, providing further insight to simplify the preparation and advance the application of ultra-high strength TMCs via short-process technology.</div></div>\",\"PeriodicalId\":282,\"journal\":{\"name\":\"Composites Part A: Applied Science and Manufacturing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Part A: Applied Science and Manufacturing\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359835X24005207\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part A: Applied Science and Manufacturing","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359835X24005207","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Achieving ultra-high strength in TiB/metastable-β composites via short-process technology
Lightweight titanium alloys with ultra-high strength and reasonable ductility are desirable for aerospace applications. However, titanium alloys typically require cumbersome heat treatment to achieve excellent mechanical properties. Here, ultra-high strength Ti-55531-based composites were fabricated by introducing TiB whiskers using a short process, i.e. melting and isothermal forging. The microstructure evolution during isothermal forging was investigated, TiB whiskers would promote the discontinuous dynamic recrystallization and impede abnormal grain growth, resulting in significant β grain refinement, equiaxialization, and crystal orientation randomization. In addition, uniformly distributed nano-scaled αs lamellae were formed. 2.5 vol% TiB/Ti-55531 achieved a superior strength-plasticity synergy with the ultra-high strength of 1525 ± 4 MPa and elongation of 6.4 %±0.2 %, which were 9.2 % and 12.3 % higher than that of Ti-55531, respectively. The strengthening mechanisms were thoroughly analyzed, providing further insight to simplify the preparation and advance the application of ultra-high strength TMCs via short-process technology.
期刊介绍:
Composites Part A: Applied Science and Manufacturing is a comprehensive journal that publishes original research papers, review articles, case studies, short communications, and letters covering various aspects of composite materials science and technology. This includes fibrous and particulate reinforcements in polymeric, metallic, and ceramic matrices, as well as 'natural' composites like wood and biological materials. The journal addresses topics such as properties, design, and manufacture of reinforcing fibers and particles, novel architectures and concepts, multifunctional composites, advancements in fabrication and processing, manufacturing science, process modeling, experimental mechanics, microstructural characterization, interfaces, prediction and measurement of mechanical, physical, and chemical behavior, and performance in service. Additionally, articles on economic and commercial aspects, design, and case studies are welcomed. All submissions undergo rigorous peer review to ensure they contribute significantly and innovatively, maintaining high standards for content and presentation. The editorial team aims to expedite the review process for prompt publication.