最大 1 平面图中的大匹配

IF 0.7 3区 数学 Q2 MATHEMATICS
Therese Biedl , John Wittnebel
{"title":"最大 1 平面图中的大匹配","authors":"Therese Biedl ,&nbsp;John Wittnebel","doi":"10.1016/j.disc.2024.114288","DOIUrl":null,"url":null,"abstract":"<div><div>It is well-known that every maximal planar graph has a matching of size at least <span><math><mfrac><mrow><mi>n</mi><mo>+</mo><mn>8</mn></mrow><mrow><mn>3</mn></mrow></mfrac></math></span> if <span><math><mi>n</mi><mo>≥</mo><mn>14</mn></math></span>. In this paper, we investigate similar matching-bounds for maximal <em>1-planar</em> graphs, i.e., graphs that can be drawn such that every edge has at most one crossing. In particular we show that every 3-connected simple-maximal 1-planar graph has a matching of size at least <span><math><mfrac><mrow><mn>2</mn><mi>n</mi><mo>+</mo><mn>6</mn></mrow><mrow><mn>5</mn></mrow></mfrac></math></span>; the bound decreases to <span><math><mfrac><mrow><mn>3</mn><mi>n</mi><mo>+</mo><mn>14</mn></mrow><mrow><mn>10</mn></mrow></mfrac></math></span> if the graph need not be 3-connected. We also give (weaker) bounds when the graph comes with a fixed 1-planar drawing or is not simple. All our bounds are tight in the sense that some graph that satisfies the restrictions has no bigger matching.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 2","pages":"Article 114288"},"PeriodicalIF":0.7000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large matchings in maximal 1-planar graphs\",\"authors\":\"Therese Biedl ,&nbsp;John Wittnebel\",\"doi\":\"10.1016/j.disc.2024.114288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>It is well-known that every maximal planar graph has a matching of size at least <span><math><mfrac><mrow><mi>n</mi><mo>+</mo><mn>8</mn></mrow><mrow><mn>3</mn></mrow></mfrac></math></span> if <span><math><mi>n</mi><mo>≥</mo><mn>14</mn></math></span>. In this paper, we investigate similar matching-bounds for maximal <em>1-planar</em> graphs, i.e., graphs that can be drawn such that every edge has at most one crossing. In particular we show that every 3-connected simple-maximal 1-planar graph has a matching of size at least <span><math><mfrac><mrow><mn>2</mn><mi>n</mi><mo>+</mo><mn>6</mn></mrow><mrow><mn>5</mn></mrow></mfrac></math></span>; the bound decreases to <span><math><mfrac><mrow><mn>3</mn><mi>n</mi><mo>+</mo><mn>14</mn></mrow><mrow><mn>10</mn></mrow></mfrac></math></span> if the graph need not be 3-connected. We also give (weaker) bounds when the graph comes with a fixed 1-planar drawing or is not simple. All our bounds are tight in the sense that some graph that satisfies the restrictions has no bigger matching.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 2\",\"pages\":\"Article 114288\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X24004199\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24004199","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,如果 n≥14 ,则每个最大平面图的匹配大小至少为 n+83。在本文中,我们将研究最大 1-planar 图的类似匹配边界,即可以画出每条边最多有一个交叉点的图。特别是,我们证明了每个 3 连接的简单最大 1-planar 图都有一个大小至少为 2n+65 的匹配;如果图不需要是 3 连接的,则边界会减小到 3n+1410。当图形带有固定的 1-planar 图或不简单时,我们也给出了(较弱的)边界。我们的所有约束都很严格,因为满足限制条件的某些图没有更大的匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large matchings in maximal 1-planar graphs
It is well-known that every maximal planar graph has a matching of size at least n+83 if n14. In this paper, we investigate similar matching-bounds for maximal 1-planar graphs, i.e., graphs that can be drawn such that every edge has at most one crossing. In particular we show that every 3-connected simple-maximal 1-planar graph has a matching of size at least 2n+65; the bound decreases to 3n+1410 if the graph need not be 3-connected. We also give (weaker) bounds when the graph comes with a fixed 1-planar drawing or is not simple. All our bounds are tight in the sense that some graph that satisfies the restrictions has no bigger matching.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信