Alireza Aldaghi , Najmeh Rezazadeh , Mohammad Gheibi , Hassan Monhemi , Mohammad Eftekhari
{"title":"水热法合成用于去除水样中汞离子的绿色 SnS-Carbon 微板吸附剂","authors":"Alireza Aldaghi , Najmeh Rezazadeh , Mohammad Gheibi , Hassan Monhemi , Mohammad Eftekhari","doi":"10.1016/j.diamond.2024.111678","DOIUrl":null,"url":null,"abstract":"<div><div>Mercury ion (Hg<sup>2+</sup>) finds a broad industrial application and due to its significant toxicity to both humans and aquatic life, development of highly effective adsorbents for its removal holds considerable importance. This study introduces a green adsorbent consisting of tin sulfide (SnS)‑carbon microplates synthesized through a straightforward one-step hydrothermal process followed by its application for the removal of Hg<sup>2+</sup> from water samples. The synthesized adsorbent is characterized using Fourier Transform Infrared Spectrophotometry (FT-IR), Field Emission Scanning Electron Microscopy (FESEM), Energy-Dispersive X-ray spectroscopy (EDX), Thermogravimetric analysis (TGA), Brunauer–Emmett–Teller (BET) and X-Ray diffraction analysis (XRD). Through the optimization of crucial parameters and with thanks to the effective interaction between S atoms (soft base) of SnS-C adsorbent and Hg<sup>2+</sup> (soft acid), an impressive Hg<sup>2+</sup> removal percentage of approximately 99.0 % is achieved for 100 mg L<sup>−1</sup> Hg<sup>2+</sup>. Interpreting of isotherm models indicate that Hg<sup>2+</sup> adsorption conforms to the Langmuir isotherm with a maximum adsorption capacity of 238.1 mg/g. Finally, the SnS-Carbon microplate adsorbent exhibits notable advantages, including a green and convenient synthesis route (achieved through a one-step hydrothermal method) and high efficiency, making it a potent adsorbent for the decontamination of Hg<sup>2+</sup> from water samples.</div></div>","PeriodicalId":11266,"journal":{"name":"Diamond and Related Materials","volume":"150 ","pages":"Article 111678"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrothermally synthesis of a green SnS-Carbon microplate adsorbent for the removal of mercury ion from water samples\",\"authors\":\"Alireza Aldaghi , Najmeh Rezazadeh , Mohammad Gheibi , Hassan Monhemi , Mohammad Eftekhari\",\"doi\":\"10.1016/j.diamond.2024.111678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Mercury ion (Hg<sup>2+</sup>) finds a broad industrial application and due to its significant toxicity to both humans and aquatic life, development of highly effective adsorbents for its removal holds considerable importance. This study introduces a green adsorbent consisting of tin sulfide (SnS)‑carbon microplates synthesized through a straightforward one-step hydrothermal process followed by its application for the removal of Hg<sup>2+</sup> from water samples. The synthesized adsorbent is characterized using Fourier Transform Infrared Spectrophotometry (FT-IR), Field Emission Scanning Electron Microscopy (FESEM), Energy-Dispersive X-ray spectroscopy (EDX), Thermogravimetric analysis (TGA), Brunauer–Emmett–Teller (BET) and X-Ray diffraction analysis (XRD). Through the optimization of crucial parameters and with thanks to the effective interaction between S atoms (soft base) of SnS-C adsorbent and Hg<sup>2+</sup> (soft acid), an impressive Hg<sup>2+</sup> removal percentage of approximately 99.0 % is achieved for 100 mg L<sup>−1</sup> Hg<sup>2+</sup>. Interpreting of isotherm models indicate that Hg<sup>2+</sup> adsorption conforms to the Langmuir isotherm with a maximum adsorption capacity of 238.1 mg/g. Finally, the SnS-Carbon microplate adsorbent exhibits notable advantages, including a green and convenient synthesis route (achieved through a one-step hydrothermal method) and high efficiency, making it a potent adsorbent for the decontamination of Hg<sup>2+</sup> from water samples.</div></div>\",\"PeriodicalId\":11266,\"journal\":{\"name\":\"Diamond and Related Materials\",\"volume\":\"150 \",\"pages\":\"Article 111678\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diamond and Related Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925963524008914\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diamond and Related Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925963524008914","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
Hydrothermally synthesis of a green SnS-Carbon microplate adsorbent for the removal of mercury ion from water samples
Mercury ion (Hg2+) finds a broad industrial application and due to its significant toxicity to both humans and aquatic life, development of highly effective adsorbents for its removal holds considerable importance. This study introduces a green adsorbent consisting of tin sulfide (SnS)‑carbon microplates synthesized through a straightforward one-step hydrothermal process followed by its application for the removal of Hg2+ from water samples. The synthesized adsorbent is characterized using Fourier Transform Infrared Spectrophotometry (FT-IR), Field Emission Scanning Electron Microscopy (FESEM), Energy-Dispersive X-ray spectroscopy (EDX), Thermogravimetric analysis (TGA), Brunauer–Emmett–Teller (BET) and X-Ray diffraction analysis (XRD). Through the optimization of crucial parameters and with thanks to the effective interaction between S atoms (soft base) of SnS-C adsorbent and Hg2+ (soft acid), an impressive Hg2+ removal percentage of approximately 99.0 % is achieved for 100 mg L−1 Hg2+. Interpreting of isotherm models indicate that Hg2+ adsorption conforms to the Langmuir isotherm with a maximum adsorption capacity of 238.1 mg/g. Finally, the SnS-Carbon microplate adsorbent exhibits notable advantages, including a green and convenient synthesis route (achieved through a one-step hydrothermal method) and high efficiency, making it a potent adsorbent for the decontamination of Hg2+ from water samples.
期刊介绍:
DRM is a leading international journal that publishes new fundamental and applied research on all forms of diamond, the integration of diamond with other advanced materials and development of technologies exploiting diamond. The synthesis, characterization and processing of single crystal diamond, polycrystalline films, nanodiamond powders and heterostructures with other advanced materials are encouraged topics for technical and review articles. In addition to diamond, the journal publishes manuscripts on the synthesis, characterization and application of other related materials including diamond-like carbons, carbon nanotubes, graphene, and boron and carbon nitrides. Articles are sought on the chemical functionalization of diamond and related materials as well as their use in electrochemistry, energy storage and conversion, chemical and biological sensing, imaging, thermal management, photonic and quantum applications, electron emission and electronic devices.
The International Conference on Diamond and Carbon Materials has evolved into the largest and most well attended forum in the field of diamond, providing a forum to showcase the latest results in the science and technology of diamond and other carbon materials such as carbon nanotubes, graphene, and diamond-like carbon. Run annually in association with Diamond and Related Materials the conference provides junior and established researchers the opportunity to exchange the latest results ranging from fundamental physical and chemical concepts to applied research focusing on the next generation carbon-based devices.