{"title":"2020-2023年中国褐飞虱抗药性的全区调查与监测","authors":"Wen-Nan Ye, Yu Li, Yan-Chao Zhang, Zhao-Yu Liu, Xin-Yu Song, Xin-Guo Pei, Shun-Fan Wu, Cong-Fen Gao","doi":"10.1016/j.pestbp.2024.106173","DOIUrl":null,"url":null,"abstract":"<div><div>The brown planthopper (BPH), <em>Nilaparvata lugens</em> (Stål), is a notorious pest affecting Asian rice crops. The evolution of insecticide resistance in BPH has emerged as a significant challenge in effectively managing this pest. This study revealed the resistance status of BPH to nine insecticides in ten provinces and Shanghai City in China from 2020 to 2023. Monitoring results showed that the resistance of BPH to triflumezopyrim, nitenpyram, and dinotefuran increased rapidly. The average resistance ratio of BPH to triflumezopyrim increased from 2.5 to 7.1 fold, nitenpyram from 18.3 to 37.7 fold, and dinotefuran from 119.5 to 268.1 fold. All populations remained extremely high resistance to imidacloprid, thiamethoxam, and buprofezin. Most field populations of BPH maintained moderate resistance to chlorpyrifos and sulfoxaflor, and high resistance to pymetrozine by rice stem dipping method. However, considering the reproduction-inhibiting character of pymetrozine, susceptible to low resistance levels to pymetrozine were monitored by Insecticide Resistance Action Committee (IRAC) NO.005 method. This result indicated that pymetrozine might lose efficacy in the control of application generation, but it could significantly inhibit the reproduction of field populations of BPH. Additionally, we compared the expression levels of 11 nicotinic acetylcholine receptor (nAChR) genes, the targets of nAChR competitive modulators, in four field populations (FY23, YH23, LJ23, LP23) and susceptible strain. The expression level of nAChR α4 was significantly reduced in all field populations, while α1, α2, α6, and α7 were significantly reduced in some field populations. Our findings provide valuable information for resistance management strategies in <em>N. lugens</em> and offer new insights into the resistance mechanisms of nAChR competitive modulators.</div></div>","PeriodicalId":19828,"journal":{"name":"Pesticide Biochemistry and Physiology","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Area-wide survey and monitoring of insecticide resistance in the brown planthopper, Nilaparvata lugens (Stål), from 2020 to 2023 in China\",\"authors\":\"Wen-Nan Ye, Yu Li, Yan-Chao Zhang, Zhao-Yu Liu, Xin-Yu Song, Xin-Guo Pei, Shun-Fan Wu, Cong-Fen Gao\",\"doi\":\"10.1016/j.pestbp.2024.106173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The brown planthopper (BPH), <em>Nilaparvata lugens</em> (Stål), is a notorious pest affecting Asian rice crops. The evolution of insecticide resistance in BPH has emerged as a significant challenge in effectively managing this pest. This study revealed the resistance status of BPH to nine insecticides in ten provinces and Shanghai City in China from 2020 to 2023. Monitoring results showed that the resistance of BPH to triflumezopyrim, nitenpyram, and dinotefuran increased rapidly. The average resistance ratio of BPH to triflumezopyrim increased from 2.5 to 7.1 fold, nitenpyram from 18.3 to 37.7 fold, and dinotefuran from 119.5 to 268.1 fold. All populations remained extremely high resistance to imidacloprid, thiamethoxam, and buprofezin. Most field populations of BPH maintained moderate resistance to chlorpyrifos and sulfoxaflor, and high resistance to pymetrozine by rice stem dipping method. However, considering the reproduction-inhibiting character of pymetrozine, susceptible to low resistance levels to pymetrozine were monitored by Insecticide Resistance Action Committee (IRAC) NO.005 method. This result indicated that pymetrozine might lose efficacy in the control of application generation, but it could significantly inhibit the reproduction of field populations of BPH. Additionally, we compared the expression levels of 11 nicotinic acetylcholine receptor (nAChR) genes, the targets of nAChR competitive modulators, in four field populations (FY23, YH23, LJ23, LP23) and susceptible strain. The expression level of nAChR α4 was significantly reduced in all field populations, while α1, α2, α6, and α7 were significantly reduced in some field populations. Our findings provide valuable information for resistance management strategies in <em>N. lugens</em> and offer new insights into the resistance mechanisms of nAChR competitive modulators.</div></div>\",\"PeriodicalId\":19828,\"journal\":{\"name\":\"Pesticide Biochemistry and Physiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pesticide Biochemistry and Physiology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0048357524004061\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pesticide Biochemistry and Physiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0048357524004061","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Area-wide survey and monitoring of insecticide resistance in the brown planthopper, Nilaparvata lugens (Stål), from 2020 to 2023 in China
The brown planthopper (BPH), Nilaparvata lugens (Stål), is a notorious pest affecting Asian rice crops. The evolution of insecticide resistance in BPH has emerged as a significant challenge in effectively managing this pest. This study revealed the resistance status of BPH to nine insecticides in ten provinces and Shanghai City in China from 2020 to 2023. Monitoring results showed that the resistance of BPH to triflumezopyrim, nitenpyram, and dinotefuran increased rapidly. The average resistance ratio of BPH to triflumezopyrim increased from 2.5 to 7.1 fold, nitenpyram from 18.3 to 37.7 fold, and dinotefuran from 119.5 to 268.1 fold. All populations remained extremely high resistance to imidacloprid, thiamethoxam, and buprofezin. Most field populations of BPH maintained moderate resistance to chlorpyrifos and sulfoxaflor, and high resistance to pymetrozine by rice stem dipping method. However, considering the reproduction-inhibiting character of pymetrozine, susceptible to low resistance levels to pymetrozine were monitored by Insecticide Resistance Action Committee (IRAC) NO.005 method. This result indicated that pymetrozine might lose efficacy in the control of application generation, but it could significantly inhibit the reproduction of field populations of BPH. Additionally, we compared the expression levels of 11 nicotinic acetylcholine receptor (nAChR) genes, the targets of nAChR competitive modulators, in four field populations (FY23, YH23, LJ23, LP23) and susceptible strain. The expression level of nAChR α4 was significantly reduced in all field populations, while α1, α2, α6, and α7 were significantly reduced in some field populations. Our findings provide valuable information for resistance management strategies in N. lugens and offer new insights into the resistance mechanisms of nAChR competitive modulators.
期刊介绍:
Pesticide Biochemistry and Physiology publishes original scientific articles pertaining to the mode of action of plant protection agents such as insecticides, fungicides, herbicides, and similar compounds, including nonlethal pest control agents, biosynthesis of pheromones, hormones, and plant resistance agents. Manuscripts may include a biochemical, physiological, or molecular study for an understanding of comparative toxicology or selective toxicity of both target and nontarget organisms. Particular interest will be given to studies on the molecular biology of pest control, toxicology, and pesticide resistance.
Research Areas Emphasized Include the Biochemistry and Physiology of:
• Comparative toxicity
• Mode of action
• Pathophysiology
• Plant growth regulators
• Resistance
• Other effects of pesticides on both parasites and hosts.