论与切比雪夫多项式有关的某些最大曲线

IF 1.2 3区 数学 Q1 MATHEMATICS
Guilherme Dias , Saeed Tafazolian , Jaap Top
{"title":"论与切比雪夫多项式有关的某些最大曲线","authors":"Guilherme Dias ,&nbsp;Saeed Tafazolian ,&nbsp;Jaap Top","doi":"10.1016/j.ffa.2024.102521","DOIUrl":null,"url":null,"abstract":"<div><div>This paper studies curves defined using Chebyshev polynomials <span><math><msub><mrow><mi>φ</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> over finite fields. Given the hyperelliptic curve <span><math><mi>C</mi></math></span> corresponding to the equation <span><math><msup><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><msub><mrow><mi>φ</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>(</mo><mi>u</mi><mo>)</mo></math></span>, the prime powers <span><math><mi>q</mi><mo>≡</mo><mn>3</mn><mspace></mspace><mrow><mi>mod</mi></mrow><mspace></mspace><mn>4</mn></math></span> are determined such that <span><math><msub><mrow><mi>φ</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> is separable and <span><math><mi>C</mi></math></span> is maximal over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span>. This extends a result from <span><span>[30]</span></span> that treats the special cases <span><math><mn>2</mn><mo>|</mo><mi>d</mi></math></span> as well as <em>d</em> a prime number. In particular a proof of <span><span>[30, Conjecture 1.7]</span></span> is presented. Moreover, we give a complete description of the pairs <span><math><mo>(</mo><mi>d</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span> such that the projective closure of the plane curve defined by <span><math><msup><mrow><mi>v</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>=</mo><msub><mrow><mi>φ</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>(</mo><mi>u</mi><mo>)</mo></math></span> is smooth and maximal over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span>.</div><div>A number of analogous maximality results are discussed.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"101 ","pages":"Article 102521"},"PeriodicalIF":1.2000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On certain maximal curves related to Chebyshev polynomials\",\"authors\":\"Guilherme Dias ,&nbsp;Saeed Tafazolian ,&nbsp;Jaap Top\",\"doi\":\"10.1016/j.ffa.2024.102521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper studies curves defined using Chebyshev polynomials <span><math><msub><mrow><mi>φ</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> over finite fields. Given the hyperelliptic curve <span><math><mi>C</mi></math></span> corresponding to the equation <span><math><msup><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><msub><mrow><mi>φ</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>(</mo><mi>u</mi><mo>)</mo></math></span>, the prime powers <span><math><mi>q</mi><mo>≡</mo><mn>3</mn><mspace></mspace><mrow><mi>mod</mi></mrow><mspace></mspace><mn>4</mn></math></span> are determined such that <span><math><msub><mrow><mi>φ</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> is separable and <span><math><mi>C</mi></math></span> is maximal over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span>. This extends a result from <span><span>[30]</span></span> that treats the special cases <span><math><mn>2</mn><mo>|</mo><mi>d</mi></math></span> as well as <em>d</em> a prime number. In particular a proof of <span><span>[30, Conjecture 1.7]</span></span> is presented. Moreover, we give a complete description of the pairs <span><math><mo>(</mo><mi>d</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span> such that the projective closure of the plane curve defined by <span><math><msup><mrow><mi>v</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>=</mo><msub><mrow><mi>φ</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>(</mo><mi>u</mi><mo>)</mo></math></span> is smooth and maximal over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span>.</div><div>A number of analogous maximality results are discussed.</div></div>\",\"PeriodicalId\":50446,\"journal\":{\"name\":\"Finite Fields and Their Applications\",\"volume\":\"101 \",\"pages\":\"Article 102521\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Fields and Their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1071579724001606\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579724001606","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究在有限域上用切比雪夫多项式 φd(x) 定义的曲线。给定与方程 v2=φd(u) 相对应的超椭圆曲线 C,确定质幂 q≡3mod4 使得 φd(x) 是可分的,且 C 在 Fq2 上是最大的。这扩展了 [30] 中的一个结果,它处理了 2|d 以及 d 是素数的特殊情况。我们特别提出了 [30, 猜想 1.7] 的证明。此外,我们还给出了一对 (d,q) 的完整描述,即 vd=φd(u) 所定义的平面曲线的投影闭包是光滑的,并且是 Fq2 上最大的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On certain maximal curves related to Chebyshev polynomials
This paper studies curves defined using Chebyshev polynomials φd(x) over finite fields. Given the hyperelliptic curve C corresponding to the equation v2=φd(u), the prime powers q3mod4 are determined such that φd(x) is separable and C is maximal over Fq2. This extends a result from [30] that treats the special cases 2|d as well as d a prime number. In particular a proof of [30, Conjecture 1.7] is presented. Moreover, we give a complete description of the pairs (d,q) such that the projective closure of the plane curve defined by vd=φd(u) is smooth and maximal over Fq2.
A number of analogous maximality results are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
20.00%
发文量
133
审稿时长
6-12 weeks
期刊介绍: Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering. For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods. The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信