有限域上的稳定二项式

IF 1.2 3区 数学 Q1 MATHEMATICS
Arthur Fernandes , Daniel Panario , Lucas Reis
{"title":"有限域上的稳定二项式","authors":"Arthur Fernandes ,&nbsp;Daniel Panario ,&nbsp;Lucas Reis","doi":"10.1016/j.ffa.2024.102520","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study stable binomials over finite fields, i.e., irreducible binomials <span><math><msup><mrow><mi>x</mi></mrow><mrow><mi>t</mi></mrow></msup><mo>−</mo><mi>b</mi><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>[</mo><mi>x</mi><mo>]</mo></math></span> such that all their iterates are also irreducible over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>. We obtain a simple criterion on the stability of binomials based on the forward orbit of 0 under the map <span><math><mi>z</mi><mo>↦</mo><msup><mrow><mi>z</mi></mrow><mrow><mi>t</mi></mrow></msup><mo>−</mo><mi>b</mi></math></span>. In particular, our criterion extends the one obtained by Jones and Boston (2011) for the quadratic case. As applications of our main result, we obtain an explicit 1-parameter family of stable quartics over prime fields <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> with <span><math><mi>p</mi><mo>≡</mo><mn>5</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>24</mn><mo>)</mo></math></span> and also develop an algorithm to test the stability of binomials over finite fields. Finally, building upon a work of Ostafe and Shparlinski (2010), we employ character sums to bound the complexity of such algorithm.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"101 ","pages":"Article 102520"},"PeriodicalIF":1.2000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stable binomials over finite fields\",\"authors\":\"Arthur Fernandes ,&nbsp;Daniel Panario ,&nbsp;Lucas Reis\",\"doi\":\"10.1016/j.ffa.2024.102520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we study stable binomials over finite fields, i.e., irreducible binomials <span><math><msup><mrow><mi>x</mi></mrow><mrow><mi>t</mi></mrow></msup><mo>−</mo><mi>b</mi><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>[</mo><mi>x</mi><mo>]</mo></math></span> such that all their iterates are also irreducible over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>. We obtain a simple criterion on the stability of binomials based on the forward orbit of 0 under the map <span><math><mi>z</mi><mo>↦</mo><msup><mrow><mi>z</mi></mrow><mrow><mi>t</mi></mrow></msup><mo>−</mo><mi>b</mi></math></span>. In particular, our criterion extends the one obtained by Jones and Boston (2011) for the quadratic case. As applications of our main result, we obtain an explicit 1-parameter family of stable quartics over prime fields <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> with <span><math><mi>p</mi><mo>≡</mo><mn>5</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>24</mn><mo>)</mo></math></span> and also develop an algorithm to test the stability of binomials over finite fields. Finally, building upon a work of Ostafe and Shparlinski (2010), we employ character sums to bound the complexity of such algorithm.</div></div>\",\"PeriodicalId\":50446,\"journal\":{\"name\":\"Finite Fields and Their Applications\",\"volume\":\"101 \",\"pages\":\"Article 102520\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Fields and Their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S107157972400159X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S107157972400159X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究有限域上的稳定二项式,即不可约二项式 xt-b∈Fq[x],使得它们的所有迭代也都是 Fq 上的不可约二项式。我们根据 0 在 z↦zt-b 映射下的前向轨道,得到了一个关于二项式稳定性的简单判据。特别是,我们的判据扩展了 Jones 和 Boston(2011)在二次情况下得到的判据。作为我们主要结果的应用,我们得到了质域 Fp 上 p≡5(mod24)的稳定四元数的一个明确的 1 参数族,还开发了一种算法来检验有限域上二项式的稳定性。最后,在 Ostafe 和 Shparlinski(2010 年)工作的基础上,我们利用特征和来约束这种算法的复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stable binomials over finite fields
In this paper, we study stable binomials over finite fields, i.e., irreducible binomials xtbFq[x] such that all their iterates are also irreducible over Fq. We obtain a simple criterion on the stability of binomials based on the forward orbit of 0 under the map zztb. In particular, our criterion extends the one obtained by Jones and Boston (2011) for the quadratic case. As applications of our main result, we obtain an explicit 1-parameter family of stable quartics over prime fields Fp with p5(mod24) and also develop an algorithm to test the stability of binomials over finite fields. Finally, building upon a work of Ostafe and Shparlinski (2010), we employ character sums to bound the complexity of such algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
20.00%
发文量
133
审稿时长
6-12 weeks
期刊介绍: Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering. For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods. The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信