Stefan Cristian Galusnyak, Letitia Petrescu, Imre-Lucaci Arpad, Calin-Cristian Cormos
{"title":"实现化学品增值:不同甘油价值化途径的技术和环境生命周期评估评价","authors":"Stefan Cristian Galusnyak, Letitia Petrescu, Imre-Lucaci Arpad, Calin-Cristian Cormos","doi":"10.1016/j.seta.2024.104043","DOIUrl":null,"url":null,"abstract":"<div><div>Biodiesel is acknowledged as the most appropriate biofuel to decarbonise the transport sector and combat climate change. The ever-increasing biodiesel production via transesterification results in large amount of glycerol (e.g., 10 kg of glycerol for every 100 kg of biodiesel). Converting glycerol into value-added goods is perceived to be a viable way to lower the high cost of producing biodiesel and expand its market share. The current study examines the technical and environmental aspects of bio-hydrogen, bio-syngas, acrolein, propylene glycol, epichlorohydrin, bio-methanol and bio-ethanol synthesis. CHEMCAD process simulation software was used to perform the modelling and simulation aspects considering a glycerol flowrate of 100 kg/h. The environmental study is based on primary and secondary data and is carried out using the Life Cycle Assessment methodology and the LCA for Experts software, using ReCiPe as the impact assessment method. The technical evaluation points towards glycerol conversion to propylene glycol and bio-methanol production as the best approaches given the relatively low energy requirements, increased purity (>97 wt%) and steadily growing product market. Bio-methanol exhibits the best environmental performance among all examined scenarios, providing the lowest impact in eight out of eleven categories studied while placing second in terms of FETP impact. Glycerol conversion towards propylene glycol seems as the second-best conversion route as it generates the lowest score in regards to GWP impact (0.31 kg CO<sub>2</sub> eq./ kg<sub>product</sub>). Ultimately, the most effective methods for valorizing glycerol and improving the production of biodiesel by lowering the expenses related to its manufacturing are glycerol reforming toward bio-methanol and propylene glycol.</div></div>","PeriodicalId":56019,"journal":{"name":"Sustainable Energy Technologies and Assessments","volume":"72 ","pages":"Article 104043"},"PeriodicalIF":7.1000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards value-added chemicals: Technical and environmental life cycle assessment evaluation of different glycerol valorisation pathways\",\"authors\":\"Stefan Cristian Galusnyak, Letitia Petrescu, Imre-Lucaci Arpad, Calin-Cristian Cormos\",\"doi\":\"10.1016/j.seta.2024.104043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Biodiesel is acknowledged as the most appropriate biofuel to decarbonise the transport sector and combat climate change. The ever-increasing biodiesel production via transesterification results in large amount of glycerol (e.g., 10 kg of glycerol for every 100 kg of biodiesel). Converting glycerol into value-added goods is perceived to be a viable way to lower the high cost of producing biodiesel and expand its market share. The current study examines the technical and environmental aspects of bio-hydrogen, bio-syngas, acrolein, propylene glycol, epichlorohydrin, bio-methanol and bio-ethanol synthesis. CHEMCAD process simulation software was used to perform the modelling and simulation aspects considering a glycerol flowrate of 100 kg/h. The environmental study is based on primary and secondary data and is carried out using the Life Cycle Assessment methodology and the LCA for Experts software, using ReCiPe as the impact assessment method. The technical evaluation points towards glycerol conversion to propylene glycol and bio-methanol production as the best approaches given the relatively low energy requirements, increased purity (>97 wt%) and steadily growing product market. Bio-methanol exhibits the best environmental performance among all examined scenarios, providing the lowest impact in eight out of eleven categories studied while placing second in terms of FETP impact. Glycerol conversion towards propylene glycol seems as the second-best conversion route as it generates the lowest score in regards to GWP impact (0.31 kg CO<sub>2</sub> eq./ kg<sub>product</sub>). Ultimately, the most effective methods for valorizing glycerol and improving the production of biodiesel by lowering the expenses related to its manufacturing are glycerol reforming toward bio-methanol and propylene glycol.</div></div>\",\"PeriodicalId\":56019,\"journal\":{\"name\":\"Sustainable Energy Technologies and Assessments\",\"volume\":\"72 \",\"pages\":\"Article 104043\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Energy Technologies and Assessments\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213138824004399\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy Technologies and Assessments","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213138824004399","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Towards value-added chemicals: Technical and environmental life cycle assessment evaluation of different glycerol valorisation pathways
Biodiesel is acknowledged as the most appropriate biofuel to decarbonise the transport sector and combat climate change. The ever-increasing biodiesel production via transesterification results in large amount of glycerol (e.g., 10 kg of glycerol for every 100 kg of biodiesel). Converting glycerol into value-added goods is perceived to be a viable way to lower the high cost of producing biodiesel and expand its market share. The current study examines the technical and environmental aspects of bio-hydrogen, bio-syngas, acrolein, propylene glycol, epichlorohydrin, bio-methanol and bio-ethanol synthesis. CHEMCAD process simulation software was used to perform the modelling and simulation aspects considering a glycerol flowrate of 100 kg/h. The environmental study is based on primary and secondary data and is carried out using the Life Cycle Assessment methodology and the LCA for Experts software, using ReCiPe as the impact assessment method. The technical evaluation points towards glycerol conversion to propylene glycol and bio-methanol production as the best approaches given the relatively low energy requirements, increased purity (>97 wt%) and steadily growing product market. Bio-methanol exhibits the best environmental performance among all examined scenarios, providing the lowest impact in eight out of eleven categories studied while placing second in terms of FETP impact. Glycerol conversion towards propylene glycol seems as the second-best conversion route as it generates the lowest score in regards to GWP impact (0.31 kg CO2 eq./ kgproduct). Ultimately, the most effective methods for valorizing glycerol and improving the production of biodiesel by lowering the expenses related to its manufacturing are glycerol reforming toward bio-methanol and propylene glycol.
期刊介绍:
Encouraging a transition to a sustainable energy future is imperative for our world. Technologies that enable this shift in various sectors like transportation, heating, and power systems are of utmost importance. Sustainable Energy Technologies and Assessments welcomes papers focusing on a range of aspects and levels of technological advancements in energy generation and utilization. The aim is to reduce the negative environmental impact associated with energy production and consumption, spanning from laboratory experiments to real-world applications in the commercial sector.