{"title":"开发低乳糖奶粉:减少马氏褐变的多酶方法","authors":"Payal Singh , Sumit Arora , Deepika Kathuria , Richa Singh , Priyanka Singh Rao , Vivek Sharma","doi":"10.1016/j.ifset.2024.103849","DOIUrl":null,"url":null,"abstract":"<div><div>Preparation of low lactose milk and milk products have attracted the attention of consumers due to increasing prevalence of lactose intolerance. However, the physico-chemical properties of product prepared from the single enzyme application (β-galactosidase) possess a significant concern of Maillard browning. While previous studies adjusted spray drying conditions to address Maillard browning in low lactose powder, our research introduces a multi-enzyme system for lactose hydrolysis in concentrated skim milk to produce a spray-dried powder with reduced browning. Glucose oxidase (GOX) converts glucose into gluconic acid that lowers down the concentration of Maillard reaction products (MRP's) formed during manufacture of lactose hydrolysed milk products. The activity of GOX was enhanced when used along with catalase (CAT). Use of GOX + CAT in buffer solution (containing 9 % glucose) exhibited 61.44 % glucose reduction after 22 h of reaction. GOX (70 U/ml) along with CAT (25 U/ml) when added to milk after 5 h of β-galactosidase (9.53 U/ml) action resulted in significantly higher reduction of glucose (53.95 %) after 20 h with final milk pH of 6.5. Spray dried powder prepared using optimised multi-enzymes (β-galactosidase and GOX + CAT) treated milk revealed reduced browning characteristics i.e., 12.85 browning index as compared to the powder prepared from milk treated with β-galactosidase alone (16.37).</div><div>Industrial relevance: The use of GOX + CAT during lactose hydrolysis could serve as a potential approach for mitigating browning characteristics in low-lactose milk and milk products. The multi-enzymatic system used to produce low-lactose milk can be easily adapted by large-scale industries to produce a powder with physico-chemical properties similar to traditional skim milk powder.</div></div>","PeriodicalId":329,"journal":{"name":"Innovative Food Science & Emerging Technologies","volume":"98 ","pages":"Article 103849"},"PeriodicalIF":6.3000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Developing low-lactose milk powder: A multi-enzyme approach to reduce Maillard browning\",\"authors\":\"Payal Singh , Sumit Arora , Deepika Kathuria , Richa Singh , Priyanka Singh Rao , Vivek Sharma\",\"doi\":\"10.1016/j.ifset.2024.103849\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Preparation of low lactose milk and milk products have attracted the attention of consumers due to increasing prevalence of lactose intolerance. However, the physico-chemical properties of product prepared from the single enzyme application (β-galactosidase) possess a significant concern of Maillard browning. While previous studies adjusted spray drying conditions to address Maillard browning in low lactose powder, our research introduces a multi-enzyme system for lactose hydrolysis in concentrated skim milk to produce a spray-dried powder with reduced browning. Glucose oxidase (GOX) converts glucose into gluconic acid that lowers down the concentration of Maillard reaction products (MRP's) formed during manufacture of lactose hydrolysed milk products. The activity of GOX was enhanced when used along with catalase (CAT). Use of GOX + CAT in buffer solution (containing 9 % glucose) exhibited 61.44 % glucose reduction after 22 h of reaction. GOX (70 U/ml) along with CAT (25 U/ml) when added to milk after 5 h of β-galactosidase (9.53 U/ml) action resulted in significantly higher reduction of glucose (53.95 %) after 20 h with final milk pH of 6.5. Spray dried powder prepared using optimised multi-enzymes (β-galactosidase and GOX + CAT) treated milk revealed reduced browning characteristics i.e., 12.85 browning index as compared to the powder prepared from milk treated with β-galactosidase alone (16.37).</div><div>Industrial relevance: The use of GOX + CAT during lactose hydrolysis could serve as a potential approach for mitigating browning characteristics in low-lactose milk and milk products. The multi-enzymatic system used to produce low-lactose milk can be easily adapted by large-scale industries to produce a powder with physico-chemical properties similar to traditional skim milk powder.</div></div>\",\"PeriodicalId\":329,\"journal\":{\"name\":\"Innovative Food Science & Emerging Technologies\",\"volume\":\"98 \",\"pages\":\"Article 103849\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Innovative Food Science & Emerging Technologies\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1466856424002881\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Innovative Food Science & Emerging Technologies","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1466856424002881","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Developing low-lactose milk powder: A multi-enzyme approach to reduce Maillard browning
Preparation of low lactose milk and milk products have attracted the attention of consumers due to increasing prevalence of lactose intolerance. However, the physico-chemical properties of product prepared from the single enzyme application (β-galactosidase) possess a significant concern of Maillard browning. While previous studies adjusted spray drying conditions to address Maillard browning in low lactose powder, our research introduces a multi-enzyme system for lactose hydrolysis in concentrated skim milk to produce a spray-dried powder with reduced browning. Glucose oxidase (GOX) converts glucose into gluconic acid that lowers down the concentration of Maillard reaction products (MRP's) formed during manufacture of lactose hydrolysed milk products. The activity of GOX was enhanced when used along with catalase (CAT). Use of GOX + CAT in buffer solution (containing 9 % glucose) exhibited 61.44 % glucose reduction after 22 h of reaction. GOX (70 U/ml) along with CAT (25 U/ml) when added to milk after 5 h of β-galactosidase (9.53 U/ml) action resulted in significantly higher reduction of glucose (53.95 %) after 20 h with final milk pH of 6.5. Spray dried powder prepared using optimised multi-enzymes (β-galactosidase and GOX + CAT) treated milk revealed reduced browning characteristics i.e., 12.85 browning index as compared to the powder prepared from milk treated with β-galactosidase alone (16.37).
Industrial relevance: The use of GOX + CAT during lactose hydrolysis could serve as a potential approach for mitigating browning characteristics in low-lactose milk and milk products. The multi-enzymatic system used to produce low-lactose milk can be easily adapted by large-scale industries to produce a powder with physico-chemical properties similar to traditional skim milk powder.
期刊介绍:
Innovative Food Science and Emerging Technologies (IFSET) aims to provide the highest quality original contributions and few, mainly upon invitation, reviews on and highly innovative developments in food science and emerging food process technologies. The significance of the results either for the science community or for industrial R&D groups must be specified. Papers submitted must be of highest scientific quality and only those advancing current scientific knowledge and understanding or with technical relevance will be considered.