{"title":"无人机网格巡逻中信息年龄最小化的近似方案","authors":"Weiqi Wang , Jin Xu","doi":"10.1016/j.adhoc.2024.103686","DOIUrl":null,"url":null,"abstract":"<div><div>Motivated by the critical need for unmanned aerial vehicles (UAVs) to patrol grid systems in hazardous and dynamically changing environments, this study addresses a routing problem aimed at minimizing the time-average Age of Information (AoI) for edges in general graphs. We establish a lower bound for all feasible patrol policies and demonstrate that this bound is tight when the graph contains an Eulerian cycle. For graphs without Eulerian cycles, it becomes challenging to identify the optimal patrol strategy due to the extensive range of feasible options. Our analysis shows that restricting the strategy to periodic sequences still results in an exponentially large number of possible strategies. To address this complexity, we introduce two polynomial-time approximation schemes, each involving a two-step process: constructing multigraphs first and then embedding Eulerian cycles within these multigraphs. We prove that both schemes achieve an approximation ratio of 2. Further, both analytical and numerical results suggest that evenly and sparsely distributing edge visits within a periodic route significantly reduces the average AoI compared to strategies that merely minimize the route travel distance. Building on this insight, we propose a heuristic method that not only maintains the approximation ratio of 2 but also ensures robust performance across varying random graphs.</div></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximation schemes for age of information minimization in UAV grid patrols\",\"authors\":\"Weiqi Wang , Jin Xu\",\"doi\":\"10.1016/j.adhoc.2024.103686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Motivated by the critical need for unmanned aerial vehicles (UAVs) to patrol grid systems in hazardous and dynamically changing environments, this study addresses a routing problem aimed at minimizing the time-average Age of Information (AoI) for edges in general graphs. We establish a lower bound for all feasible patrol policies and demonstrate that this bound is tight when the graph contains an Eulerian cycle. For graphs without Eulerian cycles, it becomes challenging to identify the optimal patrol strategy due to the extensive range of feasible options. Our analysis shows that restricting the strategy to periodic sequences still results in an exponentially large number of possible strategies. To address this complexity, we introduce two polynomial-time approximation schemes, each involving a two-step process: constructing multigraphs first and then embedding Eulerian cycles within these multigraphs. We prove that both schemes achieve an approximation ratio of 2. Further, both analytical and numerical results suggest that evenly and sparsely distributing edge visits within a periodic route significantly reduces the average AoI compared to strategies that merely minimize the route travel distance. Building on this insight, we propose a heuristic method that not only maintains the approximation ratio of 2 but also ensures robust performance across varying random graphs.</div></div>\",\"PeriodicalId\":55555,\"journal\":{\"name\":\"Ad Hoc Networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ad Hoc Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S157087052400297X\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ad Hoc Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S157087052400297X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Approximation schemes for age of information minimization in UAV grid patrols
Motivated by the critical need for unmanned aerial vehicles (UAVs) to patrol grid systems in hazardous and dynamically changing environments, this study addresses a routing problem aimed at minimizing the time-average Age of Information (AoI) for edges in general graphs. We establish a lower bound for all feasible patrol policies and demonstrate that this bound is tight when the graph contains an Eulerian cycle. For graphs without Eulerian cycles, it becomes challenging to identify the optimal patrol strategy due to the extensive range of feasible options. Our analysis shows that restricting the strategy to periodic sequences still results in an exponentially large number of possible strategies. To address this complexity, we introduce two polynomial-time approximation schemes, each involving a two-step process: constructing multigraphs first and then embedding Eulerian cycles within these multigraphs. We prove that both schemes achieve an approximation ratio of 2. Further, both analytical and numerical results suggest that evenly and sparsely distributing edge visits within a periodic route significantly reduces the average AoI compared to strategies that merely minimize the route travel distance. Building on this insight, we propose a heuristic method that not only maintains the approximation ratio of 2 but also ensures robust performance across varying random graphs.
期刊介绍:
The Ad Hoc Networks is an international and archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in ad hoc and sensor networking areas. The Ad Hoc Networks considers original, high quality and unpublished contributions addressing all aspects of ad hoc and sensor networks. Specific areas of interest include, but are not limited to:
Mobile and Wireless Ad Hoc Networks
Sensor Networks
Wireless Local and Personal Area Networks
Home Networks
Ad Hoc Networks of Autonomous Intelligent Systems
Novel Architectures for Ad Hoc and Sensor Networks
Self-organizing Network Architectures and Protocols
Transport Layer Protocols
Routing protocols (unicast, multicast, geocast, etc.)
Media Access Control Techniques
Error Control Schemes
Power-Aware, Low-Power and Energy-Efficient Designs
Synchronization and Scheduling Issues
Mobility Management
Mobility-Tolerant Communication Protocols
Location Tracking and Location-based Services
Resource and Information Management
Security and Fault-Tolerance Issues
Hardware and Software Platforms, Systems, and Testbeds
Experimental and Prototype Results
Quality-of-Service Issues
Cross-Layer Interactions
Scalability Issues
Performance Analysis and Simulation of Protocols.