基于广义随机 Petri 网的动态 QoX 管理系统中 Wi-Fi 网络探测器性能分析

IF 4.4 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Luis Zabala, Leire Cristobo, Eva Ibarrola, Armando Ferro
{"title":"基于广义随机 Petri 网的动态 QoX 管理系统中 Wi-Fi 网络探测器性能分析","authors":"Luis Zabala,&nbsp;Leire Cristobo,&nbsp;Eva Ibarrola,&nbsp;Armando Ferro","doi":"10.1016/j.adhoc.2024.103683","DOIUrl":null,"url":null,"abstract":"<div><div>Over the years, the concept of Quality of Service (QoS) has evolved from traditional network performance metrics to include Quality of Experience (QoE) considerations. This evolution also encompasses various business-related aspects, such as the impact of service quality on customer satisfaction, the alignment of service offerings with market demands, and the optimization of resource allocation to ensure cost-effectiveness and competitive advantage. This comprehensive approach, considering all the QoS dimensions (QoX), ensures the proper management of QoS across different services, contexts and technologies. Building on this broader QoX framework, it is essential to rely on advanced monitoring tools capable of handling the complexity introduced by these new demands. In this context, this paper describes a Generalized Stochastic Petri Net (GSPN) based model to analyze the performance of a Wi-Fi network probe in terms of computational capacity. The probe node plays a crucial role in a distributed monitoring system designed to implement a machine learning based global QoX management framework. Hence, the model explores the probe's computational resources to handle supplementary machine learning tasks alongside its typical packet capture and data processing responsibilities. Additionally, the model can evaluate the efficiency of the probe node under different scenarios, providing valuable insight into the potential need for additional resources at the node as operational demands continue to evolve.</div></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized stochastic Petri net-based performance analysis of a Wi-Fi network probe in a dynamic QoX management system\",\"authors\":\"Luis Zabala,&nbsp;Leire Cristobo,&nbsp;Eva Ibarrola,&nbsp;Armando Ferro\",\"doi\":\"10.1016/j.adhoc.2024.103683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Over the years, the concept of Quality of Service (QoS) has evolved from traditional network performance metrics to include Quality of Experience (QoE) considerations. This evolution also encompasses various business-related aspects, such as the impact of service quality on customer satisfaction, the alignment of service offerings with market demands, and the optimization of resource allocation to ensure cost-effectiveness and competitive advantage. This comprehensive approach, considering all the QoS dimensions (QoX), ensures the proper management of QoS across different services, contexts and technologies. Building on this broader QoX framework, it is essential to rely on advanced monitoring tools capable of handling the complexity introduced by these new demands. In this context, this paper describes a Generalized Stochastic Petri Net (GSPN) based model to analyze the performance of a Wi-Fi network probe in terms of computational capacity. The probe node plays a crucial role in a distributed monitoring system designed to implement a machine learning based global QoX management framework. Hence, the model explores the probe's computational resources to handle supplementary machine learning tasks alongside its typical packet capture and data processing responsibilities. Additionally, the model can evaluate the efficiency of the probe node under different scenarios, providing valuable insight into the potential need for additional resources at the node as operational demands continue to evolve.</div></div>\",\"PeriodicalId\":55555,\"journal\":{\"name\":\"Ad Hoc Networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ad Hoc Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1570870524002944\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ad Hoc Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570870524002944","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

多年来,服务质量(QoS)的概念已从传统的网络性能指标发展到包括体验质量(QoE)的考虑因素。这一演变还包括各种与业务相关的方面,如服务质量对客户满意度的影响、服务产品与市场需求的一致性,以及优化资源分配以确保成本效益和竞争优势。这种考虑到所有 QoS 维度(QoX)的综合方法可确保对不同服务、环境和技术的 QoS 进行适当管理。在这个更广泛的 QoX 框架基础上,必须依靠先进的监控工具来处理这些新需求带来的复杂性。在此背景下,本文介绍了一种基于广义随机 Petri 网(GSPN)的模型,用于分析 Wi-Fi 网络探测器在计算能力方面的性能。探针节点在分布式监控系统中发挥着重要作用,该系统旨在实施基于机器学习的全局 QoX 管理框架。因此,该模型探索了探针的计算资源,以便在完成典型的数据包捕获和数据处理任务的同时,处理辅助机器学习任务。此外,该模型还能评估探针节点在不同场景下的效率,从而提供有价值的洞察力,以了解随着运营需求的不断发展,节点对额外资源的潜在需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized stochastic Petri net-based performance analysis of a Wi-Fi network probe in a dynamic QoX management system
Over the years, the concept of Quality of Service (QoS) has evolved from traditional network performance metrics to include Quality of Experience (QoE) considerations. This evolution also encompasses various business-related aspects, such as the impact of service quality on customer satisfaction, the alignment of service offerings with market demands, and the optimization of resource allocation to ensure cost-effectiveness and competitive advantage. This comprehensive approach, considering all the QoS dimensions (QoX), ensures the proper management of QoS across different services, contexts and technologies. Building on this broader QoX framework, it is essential to rely on advanced monitoring tools capable of handling the complexity introduced by these new demands. In this context, this paper describes a Generalized Stochastic Petri Net (GSPN) based model to analyze the performance of a Wi-Fi network probe in terms of computational capacity. The probe node plays a crucial role in a distributed monitoring system designed to implement a machine learning based global QoX management framework. Hence, the model explores the probe's computational resources to handle supplementary machine learning tasks alongside its typical packet capture and data processing responsibilities. Additionally, the model can evaluate the efficiency of the probe node under different scenarios, providing valuable insight into the potential need for additional resources at the node as operational demands continue to evolve.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ad Hoc Networks
Ad Hoc Networks 工程技术-电信学
CiteScore
10.20
自引率
4.20%
发文量
131
审稿时长
4.8 months
期刊介绍: The Ad Hoc Networks is an international and archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in ad hoc and sensor networking areas. The Ad Hoc Networks considers original, high quality and unpublished contributions addressing all aspects of ad hoc and sensor networks. Specific areas of interest include, but are not limited to: Mobile and Wireless Ad Hoc Networks Sensor Networks Wireless Local and Personal Area Networks Home Networks Ad Hoc Networks of Autonomous Intelligent Systems Novel Architectures for Ad Hoc and Sensor Networks Self-organizing Network Architectures and Protocols Transport Layer Protocols Routing protocols (unicast, multicast, geocast, etc.) Media Access Control Techniques Error Control Schemes Power-Aware, Low-Power and Energy-Efficient Designs Synchronization and Scheduling Issues Mobility Management Mobility-Tolerant Communication Protocols Location Tracking and Location-based Services Resource and Information Management Security and Fault-Tolerance Issues Hardware and Software Platforms, Systems, and Testbeds Experimental and Prototype Results Quality-of-Service Issues Cross-Layer Interactions Scalability Issues Performance Analysis and Simulation of Protocols.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信