Jun-hui Luo , Hao-ming Xiao , Jun Peng , Fu-jian Wang , Xian-you Luo , Yong Chen
{"title":"碳基锌离子电容器的研究进展","authors":"Jun-hui Luo , Hao-ming Xiao , Jun Peng , Fu-jian Wang , Xian-you Luo , Yong Chen","doi":"10.1016/S1872-5805(24)60881-4","DOIUrl":null,"url":null,"abstract":"<div><div>Zinc-ion capacitors (ZICs), which consist of a capacitor-type electrode and a battery-type electrode, not only possess the high power density of supercapacitors and the high energy density of batteries, but also have other advantages such as abundant resources, high safety and environmental friendliness. However, they still face problems such as insufficient specific capacitance, a short cycling life, and narrow operating voltage and temperature ranges, which are hindering their practical use. We provide a comprehensive overview of the fundamental theory of carbon-based ZICs and summarize recent research progress from three perspectives: the carbon cathode, electrolyte and zinc anode. The influence of the structure and surface chemical properties of the carbon materials on the capacitive performance of ZICs is considered together with theoretical guidance for advancing their development and practical use.</div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"39 5","pages":"Pages 918-945"},"PeriodicalIF":5.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research progress on carbon-based zinc-ion capacitors\",\"authors\":\"Jun-hui Luo , Hao-ming Xiao , Jun Peng , Fu-jian Wang , Xian-you Luo , Yong Chen\",\"doi\":\"10.1016/S1872-5805(24)60881-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Zinc-ion capacitors (ZICs), which consist of a capacitor-type electrode and a battery-type electrode, not only possess the high power density of supercapacitors and the high energy density of batteries, but also have other advantages such as abundant resources, high safety and environmental friendliness. However, they still face problems such as insufficient specific capacitance, a short cycling life, and narrow operating voltage and temperature ranges, which are hindering their practical use. We provide a comprehensive overview of the fundamental theory of carbon-based ZICs and summarize recent research progress from three perspectives: the carbon cathode, electrolyte and zinc anode. The influence of the structure and surface chemical properties of the carbon materials on the capacitive performance of ZICs is considered together with theoretical guidance for advancing their development and practical use.</div></div>\",\"PeriodicalId\":19719,\"journal\":{\"name\":\"New Carbon Materials\",\"volume\":\"39 5\",\"pages\":\"Pages 918-945\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Carbon Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1872580524608814\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Carbon Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872580524608814","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
Research progress on carbon-based zinc-ion capacitors
Zinc-ion capacitors (ZICs), which consist of a capacitor-type electrode and a battery-type electrode, not only possess the high power density of supercapacitors and the high energy density of batteries, but also have other advantages such as abundant resources, high safety and environmental friendliness. However, they still face problems such as insufficient specific capacitance, a short cycling life, and narrow operating voltage and temperature ranges, which are hindering their practical use. We provide a comprehensive overview of the fundamental theory of carbon-based ZICs and summarize recent research progress from three perspectives: the carbon cathode, electrolyte and zinc anode. The influence of the structure and surface chemical properties of the carbon materials on the capacitive performance of ZICs is considered together with theoretical guidance for advancing their development and practical use.
期刊介绍:
New Carbon Materials is a scholarly journal that publishes original research papers focusing on the physics, chemistry, and technology of organic substances that serve as precursors for creating carbonaceous solids with aromatic or tetrahedral bonding. The scope of materials covered by the journal extends from diamond and graphite to a variety of forms including chars, semicokes, mesophase substances, carbons, carbon fibers, carbynes, fullerenes, and carbon nanotubes. The journal's objective is to showcase the latest research findings and advancements in the areas of formation, structure, properties, behaviors, and technological applications of carbon materials. Additionally, the journal includes papers on the secondary production of new carbon and composite materials, such as carbon-carbon composites, derived from the aforementioned carbons. Research papers on organic substances will be considered for publication only if they have a direct relevance to the resulting carbon materials.