{"title":"模块同构问题--反例的另一种视角","authors":"Czesław Bagiński, Kamil Zabielski","doi":"10.1016/j.jpaa.2024.107826","DOIUrl":null,"url":null,"abstract":"<div><div>As a result of impressive research <span><span>[5]</span></span>, D. García-Lucas, Á. del Río and L. Margolis defined an infinite series of non-isomorphic 2-groups <em>G</em> and <em>H</em>, whose group algebras <span><math><mi>F</mi><mi>G</mi></math></span> and <span><math><mi>F</mi><mi>H</mi></math></span> over the field <span><math><mi>F</mi><mo>=</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> are isomorphic, solving negatively the long-standing Modular Isomorphism Problem (MIP). In this note we give a different perspective on their examples and show that they are special cases of a more general construction. We also show that this type of construction for <span><math><mi>p</mi><mo>></mo><mn>2</mn></math></span> does not provide a similar counterexample to the MIP.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Modular Isomorphism Problem – the alternative perspective on counterexamples\",\"authors\":\"Czesław Bagiński, Kamil Zabielski\",\"doi\":\"10.1016/j.jpaa.2024.107826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As a result of impressive research <span><span>[5]</span></span>, D. García-Lucas, Á. del Río and L. Margolis defined an infinite series of non-isomorphic 2-groups <em>G</em> and <em>H</em>, whose group algebras <span><math><mi>F</mi><mi>G</mi></math></span> and <span><math><mi>F</mi><mi>H</mi></math></span> over the field <span><math><mi>F</mi><mo>=</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> are isomorphic, solving negatively the long-standing Modular Isomorphism Problem (MIP). In this note we give a different perspective on their examples and show that they are special cases of a more general construction. We also show that this type of construction for <span><math><mi>p</mi><mo>></mo><mn>2</mn></math></span> does not provide a similar counterexample to the MIP.</div></div>\",\"PeriodicalId\":54770,\"journal\":{\"name\":\"Journal of Pure and Applied Algebra\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pure and Applied Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022404924002238\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404924002238","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
作为令人印象深刻的研究成果[5],加西亚-卢卡斯(D. García-Lucas)、德尔里奥(Á. del Río)和马格里斯(L. Margolis)定义了非同构 2 群 G 和 H 的无限序列,它们在 F=F2 上的群代数 FG 和 FH 是同构的,从而消极地解决了长期存在的模块同构问题(MIP)。在本论文中,我们将从另一个角度来分析它们的例子,并证明它们是一种更普遍构造的特例。我们还证明,p>2 的这种构造并没有为 MIP 提供类似的反例。
The Modular Isomorphism Problem – the alternative perspective on counterexamples
As a result of impressive research [5], D. García-Lucas, Á. del Río and L. Margolis defined an infinite series of non-isomorphic 2-groups G and H, whose group algebras and over the field are isomorphic, solving negatively the long-standing Modular Isomorphism Problem (MIP). In this note we give a different perspective on their examples and show that they are special cases of a more general construction. We also show that this type of construction for does not provide a similar counterexample to the MIP.
期刊介绍:
The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.