模块同构问题--反例的另一种视角

IF 0.7 2区 数学 Q2 MATHEMATICS
Czesław Bagiński, Kamil Zabielski
{"title":"模块同构问题--反例的另一种视角","authors":"Czesław Bagiński,&nbsp;Kamil Zabielski","doi":"10.1016/j.jpaa.2024.107826","DOIUrl":null,"url":null,"abstract":"<div><div>As a result of impressive research <span><span>[5]</span></span>, D. García-Lucas, Á. del Río and L. Margolis defined an infinite series of non-isomorphic 2-groups <em>G</em> and <em>H</em>, whose group algebras <span><math><mi>F</mi><mi>G</mi></math></span> and <span><math><mi>F</mi><mi>H</mi></math></span> over the field <span><math><mi>F</mi><mo>=</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> are isomorphic, solving negatively the long-standing Modular Isomorphism Problem (MIP). In this note we give a different perspective on their examples and show that they are special cases of a more general construction. We also show that this type of construction for <span><math><mi>p</mi><mo>&gt;</mo><mn>2</mn></math></span> does not provide a similar counterexample to the MIP.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Modular Isomorphism Problem – the alternative perspective on counterexamples\",\"authors\":\"Czesław Bagiński,&nbsp;Kamil Zabielski\",\"doi\":\"10.1016/j.jpaa.2024.107826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As a result of impressive research <span><span>[5]</span></span>, D. García-Lucas, Á. del Río and L. Margolis defined an infinite series of non-isomorphic 2-groups <em>G</em> and <em>H</em>, whose group algebras <span><math><mi>F</mi><mi>G</mi></math></span> and <span><math><mi>F</mi><mi>H</mi></math></span> over the field <span><math><mi>F</mi><mo>=</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> are isomorphic, solving negatively the long-standing Modular Isomorphism Problem (MIP). In this note we give a different perspective on their examples and show that they are special cases of a more general construction. We also show that this type of construction for <span><math><mi>p</mi><mo>&gt;</mo><mn>2</mn></math></span> does not provide a similar counterexample to the MIP.</div></div>\",\"PeriodicalId\":54770,\"journal\":{\"name\":\"Journal of Pure and Applied Algebra\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pure and Applied Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022404924002238\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404924002238","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

作为令人印象深刻的研究成果[5],加西亚-卢卡斯(D. García-Lucas)、德尔里奥(Á. del Río)和马格里斯(L. Margolis)定义了非同构 2 群 G 和 H 的无限序列,它们在 F=F2 上的群代数 FG 和 FH 是同构的,从而消极地解决了长期存在的模块同构问题(MIP)。在本论文中,我们将从另一个角度来分析它们的例子,并证明它们是一种更普遍构造的特例。我们还证明,p>2 的这种构造并没有为 MIP 提供类似的反例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Modular Isomorphism Problem – the alternative perspective on counterexamples
As a result of impressive research [5], D. García-Lucas, Á. del Río and L. Margolis defined an infinite series of non-isomorphic 2-groups G and H, whose group algebras FG and FH over the field F=F2 are isomorphic, solving negatively the long-standing Modular Isomorphism Problem (MIP). In this note we give a different perspective on their examples and show that they are special cases of a more general construction. We also show that this type of construction for p>2 does not provide a similar counterexample to the MIP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信