{"title":"MGHCN:用于交通流量预测的多图结构和超图卷积网络","authors":"Xuanxuan Fan , Kaiyuan Qi , Dong Wu , Haonan Xie , Zhijian Qu , Chongguang Ren","doi":"10.1016/j.aej.2024.10.022","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate and timely traffic flow predictions are essential for effective traffic management and congestion reduction. However, most traditional prediction methods often fail to capture the complex dynamics and correlations within traffic flows due to insufficient processing of spatiotemporal data. Specifically, these methods struggle to integrate and analyze the multi-layered spatial and temporal interactions inherent in traffic data, leading to suboptimal prediction accuracy and robustness. To address this limitation, this paper presents a Multi-Graph Structures and Hypergraph Convolutional Network (MGHCN) that combines diverse graphs and hypergraphs. The MGHCN simplifies the predictive framework by integrating key components that improve its robustness and accuracy. One of the most critical components is the dual hypergraph structure, which captures edge correlations by converting traditional graph edges into hypergraph nodes. To better capture the spatiotemporal correlation of traffic data, a Graph Convolutional Network (GCN) is employed to analyze these hypergraphs in depth. Finally, a novel adjacency matrix and a dynamic graph module are used to accurately simulate interactions between spatiotemporal features, thereby enhancing the accuracy and robustness of predictions. Experimental validation on four distinct real-world traffic datasets shows that MGHCN outperforms existing state-of-the-art traffic prediction methods.</div></div>","PeriodicalId":7484,"journal":{"name":"alexandria engineering journal","volume":"111 ","pages":"Pages 221-237"},"PeriodicalIF":6.2000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MGHCN: Multi-graph structures and hypergraph convolutional networks for traffic flow prediction\",\"authors\":\"Xuanxuan Fan , Kaiyuan Qi , Dong Wu , Haonan Xie , Zhijian Qu , Chongguang Ren\",\"doi\":\"10.1016/j.aej.2024.10.022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurate and timely traffic flow predictions are essential for effective traffic management and congestion reduction. However, most traditional prediction methods often fail to capture the complex dynamics and correlations within traffic flows due to insufficient processing of spatiotemporal data. Specifically, these methods struggle to integrate and analyze the multi-layered spatial and temporal interactions inherent in traffic data, leading to suboptimal prediction accuracy and robustness. To address this limitation, this paper presents a Multi-Graph Structures and Hypergraph Convolutional Network (MGHCN) that combines diverse graphs and hypergraphs. The MGHCN simplifies the predictive framework by integrating key components that improve its robustness and accuracy. One of the most critical components is the dual hypergraph structure, which captures edge correlations by converting traditional graph edges into hypergraph nodes. To better capture the spatiotemporal correlation of traffic data, a Graph Convolutional Network (GCN) is employed to analyze these hypergraphs in depth. Finally, a novel adjacency matrix and a dynamic graph module are used to accurately simulate interactions between spatiotemporal features, thereby enhancing the accuracy and robustness of predictions. Experimental validation on four distinct real-world traffic datasets shows that MGHCN outperforms existing state-of-the-art traffic prediction methods.</div></div>\",\"PeriodicalId\":7484,\"journal\":{\"name\":\"alexandria engineering journal\",\"volume\":\"111 \",\"pages\":\"Pages 221-237\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"alexandria engineering journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1110016824011773\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"alexandria engineering journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110016824011773","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
MGHCN: Multi-graph structures and hypergraph convolutional networks for traffic flow prediction
Accurate and timely traffic flow predictions are essential for effective traffic management and congestion reduction. However, most traditional prediction methods often fail to capture the complex dynamics and correlations within traffic flows due to insufficient processing of spatiotemporal data. Specifically, these methods struggle to integrate and analyze the multi-layered spatial and temporal interactions inherent in traffic data, leading to suboptimal prediction accuracy and robustness. To address this limitation, this paper presents a Multi-Graph Structures and Hypergraph Convolutional Network (MGHCN) that combines diverse graphs and hypergraphs. The MGHCN simplifies the predictive framework by integrating key components that improve its robustness and accuracy. One of the most critical components is the dual hypergraph structure, which captures edge correlations by converting traditional graph edges into hypergraph nodes. To better capture the spatiotemporal correlation of traffic data, a Graph Convolutional Network (GCN) is employed to analyze these hypergraphs in depth. Finally, a novel adjacency matrix and a dynamic graph module are used to accurately simulate interactions between spatiotemporal features, thereby enhancing the accuracy and robustness of predictions. Experimental validation on four distinct real-world traffic datasets shows that MGHCN outperforms existing state-of-the-art traffic prediction methods.
期刊介绍:
Alexandria Engineering Journal is an international journal devoted to publishing high quality papers in the field of engineering and applied science. Alexandria Engineering Journal is cited in the Engineering Information Services (EIS) and the Chemical Abstracts (CA). The papers published in Alexandria Engineering Journal are grouped into five sections, according to the following classification:
• Mechanical, Production, Marine and Textile Engineering
• Electrical Engineering, Computer Science and Nuclear Engineering
• Civil and Architecture Engineering
• Chemical Engineering and Applied Sciences
• Environmental Engineering