{"title":"用梯度退火法提高非晶态金属氧化物半导体薄膜晶体管的光开关性能","authors":"Gergely Tarsoly , Jae-Yun Lee , Sung-Jin Kim","doi":"10.1016/j.optmat.2024.116305","DOIUrl":null,"url":null,"abstract":"<div><div>Metal oxides are attracting attention as electronic mate rials in research and industry. Thin films of amorphous indium gallium zinc oxide (a-IGZO) exhibit low absorbance in the visible spectrum, making them ideal components in transparent electronics. To widen the scope of use for thin film transistor (TFT) devices based on a-IGZO in on-chip sensing applications, photoresponsive behavior has been achieved by proper engineering of the active layers by either introducing a photosensitive top layer or using a method to generate localized states inside the band gap. In this paper, we propose a bilayer structured with the use of thermal annealing of a-IGZO film at different temperatures. Thermal annealing has been shown to improve the electrical performance of the TFT devices because of the improved film quality but negatively affects the photoresponsivity by removing tarp sites that play an important role in both charge generation and photomultiplication via the photogating effect. Therefore, here we propose an a-IGZO film with a high temperature-annealed bottom layer and pristine top layer. The bottom layer plays a vital role in the charge transport behavior, resulting in a low threshold voltage and subthreshold swing similar to the device with a fully annealed film, while the photoresponse of the device is driven by the higher density of gap states in the pristine top layer. This proposed method is advantageous to previously published procedures due to the simplicity of using no additional materials and complex steps to introduce trap sites into the photoactive layer, but only differential annealing temperature.</div></div>","PeriodicalId":19564,"journal":{"name":"Optical Materials","volume":"157 ","pages":"Article 116305"},"PeriodicalIF":3.8000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving the photoswitching performance of a transistor with amorphous metal oxide semiconductor thin film by a gradient annealing approach\",\"authors\":\"Gergely Tarsoly , Jae-Yun Lee , Sung-Jin Kim\",\"doi\":\"10.1016/j.optmat.2024.116305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Metal oxides are attracting attention as electronic mate rials in research and industry. Thin films of amorphous indium gallium zinc oxide (a-IGZO) exhibit low absorbance in the visible spectrum, making them ideal components in transparent electronics. To widen the scope of use for thin film transistor (TFT) devices based on a-IGZO in on-chip sensing applications, photoresponsive behavior has been achieved by proper engineering of the active layers by either introducing a photosensitive top layer or using a method to generate localized states inside the band gap. In this paper, we propose a bilayer structured with the use of thermal annealing of a-IGZO film at different temperatures. Thermal annealing has been shown to improve the electrical performance of the TFT devices because of the improved film quality but negatively affects the photoresponsivity by removing tarp sites that play an important role in both charge generation and photomultiplication via the photogating effect. Therefore, here we propose an a-IGZO film with a high temperature-annealed bottom layer and pristine top layer. The bottom layer plays a vital role in the charge transport behavior, resulting in a low threshold voltage and subthreshold swing similar to the device with a fully annealed film, while the photoresponse of the device is driven by the higher density of gap states in the pristine top layer. This proposed method is advantageous to previously published procedures due to the simplicity of using no additional materials and complex steps to introduce trap sites into the photoactive layer, but only differential annealing temperature.</div></div>\",\"PeriodicalId\":19564,\"journal\":{\"name\":\"Optical Materials\",\"volume\":\"157 \",\"pages\":\"Article 116305\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925346724014885\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925346724014885","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Improving the photoswitching performance of a transistor with amorphous metal oxide semiconductor thin film by a gradient annealing approach
Metal oxides are attracting attention as electronic mate rials in research and industry. Thin films of amorphous indium gallium zinc oxide (a-IGZO) exhibit low absorbance in the visible spectrum, making them ideal components in transparent electronics. To widen the scope of use for thin film transistor (TFT) devices based on a-IGZO in on-chip sensing applications, photoresponsive behavior has been achieved by proper engineering of the active layers by either introducing a photosensitive top layer or using a method to generate localized states inside the band gap. In this paper, we propose a bilayer structured with the use of thermal annealing of a-IGZO film at different temperatures. Thermal annealing has been shown to improve the electrical performance of the TFT devices because of the improved film quality but negatively affects the photoresponsivity by removing tarp sites that play an important role in both charge generation and photomultiplication via the photogating effect. Therefore, here we propose an a-IGZO film with a high temperature-annealed bottom layer and pristine top layer. The bottom layer plays a vital role in the charge transport behavior, resulting in a low threshold voltage and subthreshold swing similar to the device with a fully annealed film, while the photoresponse of the device is driven by the higher density of gap states in the pristine top layer. This proposed method is advantageous to previously published procedures due to the simplicity of using no additional materials and complex steps to introduce trap sites into the photoactive layer, but only differential annealing temperature.
期刊介绍:
Optical Materials has an open access mirror journal Optical Materials: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
The purpose of Optical Materials is to provide a means of communication and technology transfer between researchers who are interested in materials for potential device applications. The journal publishes original papers and review articles on the design, synthesis, characterisation and applications of optical materials.
OPTICAL MATERIALS focuses on:
• Optical Properties of Material Systems;
• The Materials Aspects of Optical Phenomena;
• The Materials Aspects of Devices and Applications.
Authors can submit separate research elements describing their data to Data in Brief and methods to Methods X.