在 O₂/N₂ 中通过超高真空热退火对晶体硅进行超薄 SiONC 钝化:化学成分、形态和光致发光方面的见解

IF 3.8 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
{"title":"在 O₂/N₂ 中通过超高真空热退火对晶体硅进行超薄 SiONC 钝化:化学成分、形态和光致发光方面的见解","authors":"","doi":"10.1016/j.optmat.2024.116311","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the impact of Ultra-High Vacuum (UHV) Thermal annealing in a N₂/O₂ atmosphere on the passivation of Ar ion etched crystalline silicon (c-Si) surfaces. A comprehensive analysis of the resulting ultrathin Silicon OxyNitride Carbide layer (SiONC) was conducted using X-ray Photoelectron Spectroscopy (XPS), Ultra-Violet Spectroscopy (UPS), Photoluminescence Spectroscopy (PL), and Atomic Force Microscopy (AFM). XPS revealed a significant transformation in chemical composition from a carbon-rich contaminated surface SiO<sub>1.02</sub>C<sub>2.98</sub> to an oxygen- and nitrogen-containing passivated layer SiO<sub>0.13</sub>N<sub>0.10</sub>C<sub>0.28</sub>. UPS measurements elucidated changes in the electronic structure and Fermi level position at the c-Si/SiONC interface. AFM imaging demonstrated the formation of non-uniform SiONC islands, influencing surface morphology. Notably, PL spectroscopy indicated enhanced orange and red luminescence with energies of 2.0 and 1.73 eV, respectively, attributed to the SiONC layer. The enhanced luminescence, coupled with improved thermal stability and oxidation resistance, positions the SiONC layer as a promising material for advancing the performance of silicon-based optoelectronic devices, such as solar cells and light-emitting diodes (LEDs). This study provides fundamental insights into the correlation between the chemical, electronic, and morphological properties of the SiONC layer and its potential for improving c-Si device performance.</div></div>","PeriodicalId":19564,"journal":{"name":"Optical Materials","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrathin SiONC passivation of c-Si by UHV thermal annealing in O₂/N₂: Chemical composition, morphology, and photoluminescence insights\",\"authors\":\"\",\"doi\":\"10.1016/j.optmat.2024.116311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the impact of Ultra-High Vacuum (UHV) Thermal annealing in a N₂/O₂ atmosphere on the passivation of Ar ion etched crystalline silicon (c-Si) surfaces. A comprehensive analysis of the resulting ultrathin Silicon OxyNitride Carbide layer (SiONC) was conducted using X-ray Photoelectron Spectroscopy (XPS), Ultra-Violet Spectroscopy (UPS), Photoluminescence Spectroscopy (PL), and Atomic Force Microscopy (AFM). XPS revealed a significant transformation in chemical composition from a carbon-rich contaminated surface SiO<sub>1.02</sub>C<sub>2.98</sub> to an oxygen- and nitrogen-containing passivated layer SiO<sub>0.13</sub>N<sub>0.10</sub>C<sub>0.28</sub>. UPS measurements elucidated changes in the electronic structure and Fermi level position at the c-Si/SiONC interface. AFM imaging demonstrated the formation of non-uniform SiONC islands, influencing surface morphology. Notably, PL spectroscopy indicated enhanced orange and red luminescence with energies of 2.0 and 1.73 eV, respectively, attributed to the SiONC layer. The enhanced luminescence, coupled with improved thermal stability and oxidation resistance, positions the SiONC layer as a promising material for advancing the performance of silicon-based optoelectronic devices, such as solar cells and light-emitting diodes (LEDs). This study provides fundamental insights into the correlation between the chemical, electronic, and morphological properties of the SiONC layer and its potential for improving c-Si device performance.</div></div>\",\"PeriodicalId\":19564,\"journal\":{\"name\":\"Optical Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925346724014940\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925346724014940","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了在 N₂/O₂气氛中进行超高真空(UHV)热退火对氩离子蚀刻晶体硅(c-Si)表面钝化的影响。利用 X 射线光电子能谱 (XPS)、紫外光谱 (UPS)、光致发光能谱 (PL) 和原子力显微镜 (AFM) 对所产生的超薄氮化硅层 (SiONC) 进行了全面分析。XPS 揭示了化学成分的重大转变,从富含碳的污染表面 SiO1.02C2.98 转变为含氧和氮的钝化层 SiO0.13N0.10C0.28。UPS 测量阐明了 c-Si/SiONC 界面电子结构和费米级位置的变化。原子力显微镜成像显示形成了不均匀的 SiONC 岛,影响了表面形态。值得注意的是,PL 光谱显示,SiONC 层的橙色和红色发光增强,能量分别为 2.0 和 1.73 eV。增强的发光性能,加上更好的热稳定性和抗氧化性,使 SiONC 层成为一种很有前途的材料,可提高太阳能电池和发光二极管等硅基光电器件的性能。本研究提供了有关 SiONC 层的化学、电子和形态特性与其改善晶体硅器件性能的潜力之间相互关系的基本见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ultrathin SiONC passivation of c-Si by UHV thermal annealing in O₂/N₂: Chemical composition, morphology, and photoluminescence insights
This study investigates the impact of Ultra-High Vacuum (UHV) Thermal annealing in a N₂/O₂ atmosphere on the passivation of Ar ion etched crystalline silicon (c-Si) surfaces. A comprehensive analysis of the resulting ultrathin Silicon OxyNitride Carbide layer (SiONC) was conducted using X-ray Photoelectron Spectroscopy (XPS), Ultra-Violet Spectroscopy (UPS), Photoluminescence Spectroscopy (PL), and Atomic Force Microscopy (AFM). XPS revealed a significant transformation in chemical composition from a carbon-rich contaminated surface SiO1.02C2.98 to an oxygen- and nitrogen-containing passivated layer SiO0.13N0.10C0.28. UPS measurements elucidated changes in the electronic structure and Fermi level position at the c-Si/SiONC interface. AFM imaging demonstrated the formation of non-uniform SiONC islands, influencing surface morphology. Notably, PL spectroscopy indicated enhanced orange and red luminescence with energies of 2.0 and 1.73 eV, respectively, attributed to the SiONC layer. The enhanced luminescence, coupled with improved thermal stability and oxidation resistance, positions the SiONC layer as a promising material for advancing the performance of silicon-based optoelectronic devices, such as solar cells and light-emitting diodes (LEDs). This study provides fundamental insights into the correlation between the chemical, electronic, and morphological properties of the SiONC layer and its potential for improving c-Si device performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optical Materials
Optical Materials 工程技术-材料科学:综合
CiteScore
6.60
自引率
12.80%
发文量
1265
审稿时长
38 days
期刊介绍: Optical Materials has an open access mirror journal Optical Materials: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. The purpose of Optical Materials is to provide a means of communication and technology transfer between researchers who are interested in materials for potential device applications. The journal publishes original papers and review articles on the design, synthesis, characterisation and applications of optical materials. OPTICAL MATERIALS focuses on: • Optical Properties of Material Systems; • The Materials Aspects of Optical Phenomena; • The Materials Aspects of Devices and Applications. Authors can submit separate research elements describing their data to Data in Brief and methods to Methods X.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信