Jinxin Xue , Chilou Zhou , Pengzhi Dai , Xianhui Liu , Hao Wu , Xinfeng Li , Paul K. Chu
{"title":"操纵电镀镍涂层中的纳米 WS2 聚集体缓解 X70 管线钢中的氢脆现象","authors":"Jinxin Xue , Chilou Zhou , Pengzhi Dai , Xianhui Liu , Hao Wu , Xinfeng Li , Paul K. Chu","doi":"10.1016/j.corsci.2024.112517","DOIUrl":null,"url":null,"abstract":"<div><div>WS<sub>2</sub> is a two-dimensional nanomaterial with significant potential for hydrogen barrier applications. Herein, WS<sub>2</sub>/Ni composite coatings were fabricated on X70 pipeline steel substrates via electrodeposition. The properties of the composite coatings were systematically examined by electrochemical hydrogen permeation tests, hydrogen evolution kinetics tests, SSRT, SKPFM, and FEM. The results indicate that varying the deposition time leads to changes in coating microstructure, which correspondingly influence hydrogen permeation performance. Furthermore, the hydrogen barrier mechanism of the WS<sub>2</sub>/Ni composite coatings involves two key processes: the inhibition of hydrogen evolution reactions on the coating surface and hydrogen adsorption by WS<sub>2</sub> within the coating interior.</div></div>","PeriodicalId":290,"journal":{"name":"Corrosion Science","volume":"241 ","pages":"Article 112517"},"PeriodicalIF":7.4000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Manipulating nano-WS2 aggregates in electroplated Ni coating to mitigate hydrogen embrittlement in X70 pipeline steel\",\"authors\":\"Jinxin Xue , Chilou Zhou , Pengzhi Dai , Xianhui Liu , Hao Wu , Xinfeng Li , Paul K. Chu\",\"doi\":\"10.1016/j.corsci.2024.112517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>WS<sub>2</sub> is a two-dimensional nanomaterial with significant potential for hydrogen barrier applications. Herein, WS<sub>2</sub>/Ni composite coatings were fabricated on X70 pipeline steel substrates via electrodeposition. The properties of the composite coatings were systematically examined by electrochemical hydrogen permeation tests, hydrogen evolution kinetics tests, SSRT, SKPFM, and FEM. The results indicate that varying the deposition time leads to changes in coating microstructure, which correspondingly influence hydrogen permeation performance. Furthermore, the hydrogen barrier mechanism of the WS<sub>2</sub>/Ni composite coatings involves two key processes: the inhibition of hydrogen evolution reactions on the coating surface and hydrogen adsorption by WS<sub>2</sub> within the coating interior.</div></div>\",\"PeriodicalId\":290,\"journal\":{\"name\":\"Corrosion Science\",\"volume\":\"241 \",\"pages\":\"Article 112517\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Corrosion Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010938X24007121\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010938X24007121","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Manipulating nano-WS2 aggregates in electroplated Ni coating to mitigate hydrogen embrittlement in X70 pipeline steel
WS2 is a two-dimensional nanomaterial with significant potential for hydrogen barrier applications. Herein, WS2/Ni composite coatings were fabricated on X70 pipeline steel substrates via electrodeposition. The properties of the composite coatings were systematically examined by electrochemical hydrogen permeation tests, hydrogen evolution kinetics tests, SSRT, SKPFM, and FEM. The results indicate that varying the deposition time leads to changes in coating microstructure, which correspondingly influence hydrogen permeation performance. Furthermore, the hydrogen barrier mechanism of the WS2/Ni composite coatings involves two key processes: the inhibition of hydrogen evolution reactions on the coating surface and hydrogen adsorption by WS2 within the coating interior.
期刊介绍:
Corrosion occurrence and its practical control encompass a vast array of scientific knowledge. Corrosion Science endeavors to serve as the conduit for the exchange of ideas, developments, and research across all facets of this field, encompassing both metallic and non-metallic corrosion. The scope of this international journal is broad and inclusive. Published papers span from highly theoretical inquiries to essentially practical applications, covering diverse areas such as high-temperature oxidation, passivity, anodic oxidation, biochemical corrosion, stress corrosion cracking, and corrosion control mechanisms and methodologies.
This journal publishes original papers and critical reviews across the spectrum of pure and applied corrosion, material degradation, and surface science and engineering. It serves as a crucial link connecting metallurgists, materials scientists, and researchers investigating corrosion and degradation phenomena. Join us in advancing knowledge and understanding in the vital field of corrosion science.