Mumtaz Hussain Qureshi , Abdul Qadir , Wei-Hsin Tien
{"title":"解决粒子流测速仪方向模糊性的新技术","authors":"Mumtaz Hussain Qureshi , Abdul Qadir , Wei-Hsin Tien","doi":"10.1016/j.flowmeasinst.2024.102712","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, a novel streak direction-resolving algorithm is introduced to determine the direction of the flow field for a single image frame with multiple streaks. The streak direction was resolved by varying its intensity from 100 % to 50 % of the total intensity of the streak image. This technique was applied to two main types of flows parallel and Hill's vortex flows, parallel flows were divided into further two types constant velocity parallel flow and accelerating parallel flow. The purpose of using different types of flows was to test the robustness of the algorithm with easy and complex flows. The performance of the algorithm was checked by the angular deviation between the true and least-square fitted velocity vectors. The number of correct synthetic streak directions was measured with the success rate in percentage. A high success rate means low angular deviation and a high number of velocity vectors with correct direction was obtained. In this research, four different types of image formats were considered DP (double precision), 16-bit (without noise), 16-bit (1.0 % noise), 16-bit (5.0 % noise), and 8-bit (without noise) and the best results were obtained for DP and 16-bit image formats. The results of the parallel flows indicated a 100 % streak direction success rate, Hill's vortex was a type of complex flow therefore, the algorithm hard to resolve some streak directions due to very low velocities (less than 0.1 px (pixel)/interval) and very high-velocity gradients (greater than 52 px/interval). The observation shows that Hill's vortex synthetic streak images were resolved with a success rate of 92.76 % which means that the majority of the synthetic streaks were resolved. Experimental analysis was also done by using the PDMS microchannel setup. Intensity variation streaks were recorded with long camera exposure time and for maintaining the intensity variation, as the LED switched on maximum illumination was started, and continuous decrement in illumination was set by switching off at 50 % of the total illumination intensity. The best results were achieved with a 94 % success rate. Therefore, the proposed novel approach can be used with less expensive hardware for image processing with a single image frame and is useful for multiple applications.</div></div>","PeriodicalId":50440,"journal":{"name":"Flow Measurement and Instrumentation","volume":"100 ","pages":"Article 102712"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel technique to resolve directional ambiguity for Particle Streak Velocimetry\",\"authors\":\"Mumtaz Hussain Qureshi , Abdul Qadir , Wei-Hsin Tien\",\"doi\":\"10.1016/j.flowmeasinst.2024.102712\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, a novel streak direction-resolving algorithm is introduced to determine the direction of the flow field for a single image frame with multiple streaks. The streak direction was resolved by varying its intensity from 100 % to 50 % of the total intensity of the streak image. This technique was applied to two main types of flows parallel and Hill's vortex flows, parallel flows were divided into further two types constant velocity parallel flow and accelerating parallel flow. The purpose of using different types of flows was to test the robustness of the algorithm with easy and complex flows. The performance of the algorithm was checked by the angular deviation between the true and least-square fitted velocity vectors. The number of correct synthetic streak directions was measured with the success rate in percentage. A high success rate means low angular deviation and a high number of velocity vectors with correct direction was obtained. In this research, four different types of image formats were considered DP (double precision), 16-bit (without noise), 16-bit (1.0 % noise), 16-bit (5.0 % noise), and 8-bit (without noise) and the best results were obtained for DP and 16-bit image formats. The results of the parallel flows indicated a 100 % streak direction success rate, Hill's vortex was a type of complex flow therefore, the algorithm hard to resolve some streak directions due to very low velocities (less than 0.1 px (pixel)/interval) and very high-velocity gradients (greater than 52 px/interval). The observation shows that Hill's vortex synthetic streak images were resolved with a success rate of 92.76 % which means that the majority of the synthetic streaks were resolved. Experimental analysis was also done by using the PDMS microchannel setup. Intensity variation streaks were recorded with long camera exposure time and for maintaining the intensity variation, as the LED switched on maximum illumination was started, and continuous decrement in illumination was set by switching off at 50 % of the total illumination intensity. The best results were achieved with a 94 % success rate. Therefore, the proposed novel approach can be used with less expensive hardware for image processing with a single image frame and is useful for multiple applications.</div></div>\",\"PeriodicalId\":50440,\"journal\":{\"name\":\"Flow Measurement and Instrumentation\",\"volume\":\"100 \",\"pages\":\"Article 102712\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Flow Measurement and Instrumentation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0955598624001924\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow Measurement and Instrumentation","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955598624001924","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
A novel technique to resolve directional ambiguity for Particle Streak Velocimetry
In this study, a novel streak direction-resolving algorithm is introduced to determine the direction of the flow field for a single image frame with multiple streaks. The streak direction was resolved by varying its intensity from 100 % to 50 % of the total intensity of the streak image. This technique was applied to two main types of flows parallel and Hill's vortex flows, parallel flows were divided into further two types constant velocity parallel flow and accelerating parallel flow. The purpose of using different types of flows was to test the robustness of the algorithm with easy and complex flows. The performance of the algorithm was checked by the angular deviation between the true and least-square fitted velocity vectors. The number of correct synthetic streak directions was measured with the success rate in percentage. A high success rate means low angular deviation and a high number of velocity vectors with correct direction was obtained. In this research, four different types of image formats were considered DP (double precision), 16-bit (without noise), 16-bit (1.0 % noise), 16-bit (5.0 % noise), and 8-bit (without noise) and the best results were obtained for DP and 16-bit image formats. The results of the parallel flows indicated a 100 % streak direction success rate, Hill's vortex was a type of complex flow therefore, the algorithm hard to resolve some streak directions due to very low velocities (less than 0.1 px (pixel)/interval) and very high-velocity gradients (greater than 52 px/interval). The observation shows that Hill's vortex synthetic streak images were resolved with a success rate of 92.76 % which means that the majority of the synthetic streaks were resolved. Experimental analysis was also done by using the PDMS microchannel setup. Intensity variation streaks were recorded with long camera exposure time and for maintaining the intensity variation, as the LED switched on maximum illumination was started, and continuous decrement in illumination was set by switching off at 50 % of the total illumination intensity. The best results were achieved with a 94 % success rate. Therefore, the proposed novel approach can be used with less expensive hardware for image processing with a single image frame and is useful for multiple applications.
期刊介绍:
Flow Measurement and Instrumentation is dedicated to disseminating the latest research results on all aspects of flow measurement, in both closed conduits and open channels. The design of flow measurement systems involves a wide variety of multidisciplinary activities including modelling the flow sensor, the fluid flow and the sensor/fluid interactions through the use of computation techniques; the development of advanced transducer systems and their associated signal processing and the laboratory and field assessment of the overall system under ideal and disturbed conditions.
FMI is the essential forum for critical information exchange, and contributions are particularly encouraged in the following areas of interest:
Modelling: the application of mathematical and computational modelling to the interaction of fluid dynamics with flowmeters, including flowmeter behaviour, improved flowmeter design and installation problems. Application of CAD/CAE techniques to flowmeter modelling are eligible.
Design and development: the detailed design of the flowmeter head and/or signal processing aspects of novel flowmeters. Emphasis is given to papers identifying new sensor configurations, multisensor flow measurement systems, non-intrusive flow metering techniques and the application of microelectronic techniques in smart or intelligent systems.
Calibration techniques: including descriptions of new or existing calibration facilities and techniques, calibration data from different flowmeter types, and calibration intercomparison data from different laboratories.
Installation effect data: dealing with the effects of non-ideal flow conditions on flowmeters. Papers combining a theoretical understanding of flowmeter behaviour with experimental work are particularly welcome.