Xinliang Yang , Yanjun Lü , Le Xu , Yushan Ma , Ruibo Chen , Xiaowei Zhao
{"title":"三偏心蝶阀中气蚀侵蚀和窒流演变的数值研究","authors":"Xinliang Yang , Yanjun Lü , Le Xu , Yushan Ma , Ruibo Chen , Xiaowei Zhao","doi":"10.1016/j.flowmeasinst.2024.102725","DOIUrl":null,"url":null,"abstract":"<div><div>The tri-eccentric butterfly valve is widely utilized in the petrochemical, nuclear, and metallurgy industries due to its robust sealing performance and great pressure resistance. When the local static pressure is lower than the saturation vapor pressure, the fluid phase is transformed into vapor, and cavitation occurs. Cavitation intensifies and the bubbles generated by cavitation severely hinder the flow when the inlet pressure remains constant and the outlet pressure further decreases. This phenomenon is known as choked flow. Choked flow is a derivative phenomenon of cavitation, which seriously threatens the lifetime of valves and the safety of the operation system. In this paper, a multiphase flow of the tri-eccentric butterfly valve is modeled to investigate the choked flow characteristics. The numerical results based on the proposed model are in good agreement with the experiments. The effect of the pressure drop on the mass flow rate and flow coefficient is studied and the liquid pressure recovery factor of the tri-eccentric butterfly is determined at the certain valve opening degree based on the Schnerr and Sauer cavitation model. The relationship between the pressure ratio and choked flow is studied by pressure and velocity contours. The susceptible erosion locations and primary causes of erosion for the tri-eccentric butterfly valve at the certain valve opening degree are investigated. By comparison of the distribution of the vapor volume fraction and vortex structures, the spatial correlation between vortex and choked flow is revealed. Meanwhile, the effect of the pressure ratios on the average vapor volume fraction at 70 % and 100 % valve opening degrees is studied. The evolution of choked flow in the tri-eccentric butterfly is revealed and the cause of choking is pointed out.</div></div>","PeriodicalId":50440,"journal":{"name":"Flow Measurement and Instrumentation","volume":"100 ","pages":"Article 102725"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical investigation on cavitation erosion and evolution of choked flow in a tri-eccentric butterfly valve\",\"authors\":\"Xinliang Yang , Yanjun Lü , Le Xu , Yushan Ma , Ruibo Chen , Xiaowei Zhao\",\"doi\":\"10.1016/j.flowmeasinst.2024.102725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The tri-eccentric butterfly valve is widely utilized in the petrochemical, nuclear, and metallurgy industries due to its robust sealing performance and great pressure resistance. When the local static pressure is lower than the saturation vapor pressure, the fluid phase is transformed into vapor, and cavitation occurs. Cavitation intensifies and the bubbles generated by cavitation severely hinder the flow when the inlet pressure remains constant and the outlet pressure further decreases. This phenomenon is known as choked flow. Choked flow is a derivative phenomenon of cavitation, which seriously threatens the lifetime of valves and the safety of the operation system. In this paper, a multiphase flow of the tri-eccentric butterfly valve is modeled to investigate the choked flow characteristics. The numerical results based on the proposed model are in good agreement with the experiments. The effect of the pressure drop on the mass flow rate and flow coefficient is studied and the liquid pressure recovery factor of the tri-eccentric butterfly is determined at the certain valve opening degree based on the Schnerr and Sauer cavitation model. The relationship between the pressure ratio and choked flow is studied by pressure and velocity contours. The susceptible erosion locations and primary causes of erosion for the tri-eccentric butterfly valve at the certain valve opening degree are investigated. By comparison of the distribution of the vapor volume fraction and vortex structures, the spatial correlation between vortex and choked flow is revealed. Meanwhile, the effect of the pressure ratios on the average vapor volume fraction at 70 % and 100 % valve opening degrees is studied. The evolution of choked flow in the tri-eccentric butterfly is revealed and the cause of choking is pointed out.</div></div>\",\"PeriodicalId\":50440,\"journal\":{\"name\":\"Flow Measurement and Instrumentation\",\"volume\":\"100 \",\"pages\":\"Article 102725\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Flow Measurement and Instrumentation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S095559862400205X\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow Measurement and Instrumentation","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095559862400205X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Numerical investigation on cavitation erosion and evolution of choked flow in a tri-eccentric butterfly valve
The tri-eccentric butterfly valve is widely utilized in the petrochemical, nuclear, and metallurgy industries due to its robust sealing performance and great pressure resistance. When the local static pressure is lower than the saturation vapor pressure, the fluid phase is transformed into vapor, and cavitation occurs. Cavitation intensifies and the bubbles generated by cavitation severely hinder the flow when the inlet pressure remains constant and the outlet pressure further decreases. This phenomenon is known as choked flow. Choked flow is a derivative phenomenon of cavitation, which seriously threatens the lifetime of valves and the safety of the operation system. In this paper, a multiphase flow of the tri-eccentric butterfly valve is modeled to investigate the choked flow characteristics. The numerical results based on the proposed model are in good agreement with the experiments. The effect of the pressure drop on the mass flow rate and flow coefficient is studied and the liquid pressure recovery factor of the tri-eccentric butterfly is determined at the certain valve opening degree based on the Schnerr and Sauer cavitation model. The relationship between the pressure ratio and choked flow is studied by pressure and velocity contours. The susceptible erosion locations and primary causes of erosion for the tri-eccentric butterfly valve at the certain valve opening degree are investigated. By comparison of the distribution of the vapor volume fraction and vortex structures, the spatial correlation between vortex and choked flow is revealed. Meanwhile, the effect of the pressure ratios on the average vapor volume fraction at 70 % and 100 % valve opening degrees is studied. The evolution of choked flow in the tri-eccentric butterfly is revealed and the cause of choking is pointed out.
期刊介绍:
Flow Measurement and Instrumentation is dedicated to disseminating the latest research results on all aspects of flow measurement, in both closed conduits and open channels. The design of flow measurement systems involves a wide variety of multidisciplinary activities including modelling the flow sensor, the fluid flow and the sensor/fluid interactions through the use of computation techniques; the development of advanced transducer systems and their associated signal processing and the laboratory and field assessment of the overall system under ideal and disturbed conditions.
FMI is the essential forum for critical information exchange, and contributions are particularly encouraged in the following areas of interest:
Modelling: the application of mathematical and computational modelling to the interaction of fluid dynamics with flowmeters, including flowmeter behaviour, improved flowmeter design and installation problems. Application of CAD/CAE techniques to flowmeter modelling are eligible.
Design and development: the detailed design of the flowmeter head and/or signal processing aspects of novel flowmeters. Emphasis is given to papers identifying new sensor configurations, multisensor flow measurement systems, non-intrusive flow metering techniques and the application of microelectronic techniques in smart or intelligent systems.
Calibration techniques: including descriptions of new or existing calibration facilities and techniques, calibration data from different flowmeter types, and calibration intercomparison data from different laboratories.
Installation effect data: dealing with the effects of non-ideal flow conditions on flowmeters. Papers combining a theoretical understanding of flowmeter behaviour with experimental work are particularly welcome.