{"title":"论通过非缓变小波方案求解 Lane-Emden 模型以揭示天体物理现象","authors":"Jaya Gupta , Ratesh Kumar , Homan Emadifar","doi":"10.1016/j.aej.2024.10.064","DOIUrl":null,"url":null,"abstract":"<div><div>The research focuses on exploring the characteristics of the Lane Emden equation, which is a second-order ordinary differential equation that has its roots in astrophysics. To approximate this equation, a technique that employs non-dyadic Haar wavelets in conjunction with quasi-linearization is utilized. By utilizing non-dyadic wavelets, the ordinary differential equation can be simplified into a system of algebraic equations. Error estimates are provided to assess the accuracy of the produced data. A comparison between the existing solutions and the numerical results obtained using the suggested approach is performed to showcase its efficiency and advantages. The non-dyadic Haar wavelet approach is found to be a rich structure for numerous solutions that span a wide range of physical parameter.</div></div>","PeriodicalId":7484,"journal":{"name":"alexandria engineering journal","volume":"111 ","pages":"Pages 249-258"},"PeriodicalIF":6.2000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the solutions of the Lane-Emden model via non-dyadic wavelet scheme to unravel astrophysical phenomena\",\"authors\":\"Jaya Gupta , Ratesh Kumar , Homan Emadifar\",\"doi\":\"10.1016/j.aej.2024.10.064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The research focuses on exploring the characteristics of the Lane Emden equation, which is a second-order ordinary differential equation that has its roots in astrophysics. To approximate this equation, a technique that employs non-dyadic Haar wavelets in conjunction with quasi-linearization is utilized. By utilizing non-dyadic wavelets, the ordinary differential equation can be simplified into a system of algebraic equations. Error estimates are provided to assess the accuracy of the produced data. A comparison between the existing solutions and the numerical results obtained using the suggested approach is performed to showcase its efficiency and advantages. The non-dyadic Haar wavelet approach is found to be a rich structure for numerous solutions that span a wide range of physical parameter.</div></div>\",\"PeriodicalId\":7484,\"journal\":{\"name\":\"alexandria engineering journal\",\"volume\":\"111 \",\"pages\":\"Pages 249-258\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"alexandria engineering journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1110016824012183\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"alexandria engineering journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110016824012183","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
On the solutions of the Lane-Emden model via non-dyadic wavelet scheme to unravel astrophysical phenomena
The research focuses on exploring the characteristics of the Lane Emden equation, which is a second-order ordinary differential equation that has its roots in astrophysics. To approximate this equation, a technique that employs non-dyadic Haar wavelets in conjunction with quasi-linearization is utilized. By utilizing non-dyadic wavelets, the ordinary differential equation can be simplified into a system of algebraic equations. Error estimates are provided to assess the accuracy of the produced data. A comparison between the existing solutions and the numerical results obtained using the suggested approach is performed to showcase its efficiency and advantages. The non-dyadic Haar wavelet approach is found to be a rich structure for numerous solutions that span a wide range of physical parameter.
期刊介绍:
Alexandria Engineering Journal is an international journal devoted to publishing high quality papers in the field of engineering and applied science. Alexandria Engineering Journal is cited in the Engineering Information Services (EIS) and the Chemical Abstracts (CA). The papers published in Alexandria Engineering Journal are grouped into five sections, according to the following classification:
• Mechanical, Production, Marine and Textile Engineering
• Electrical Engineering, Computer Science and Nuclear Engineering
• Civil and Architecture Engineering
• Chemical Engineering and Applied Sciences
• Environmental Engineering