通过加氢从一氧化碳、二氧化碳及其混合物合成甲烷的热力学研究

Q3 Energy
WANG Han , GUO Shujia , QIN Zhangfeng , LI Zhikai , WANG Guofu , DONG Mei , FAN Weibin , WANG Jianguo
{"title":"通过加氢从一氧化碳、二氧化碳及其混合物合成甲烷的热力学研究","authors":"WANG Han ,&nbsp;GUO Shujia ,&nbsp;QIN Zhangfeng ,&nbsp;LI Zhikai ,&nbsp;WANG Guofu ,&nbsp;DONG Mei ,&nbsp;FAN Weibin ,&nbsp;WANG Jianguo","doi":"10.1016/S1872-5813(24)60449-4","DOIUrl":null,"url":null,"abstract":"<div><div>The synthesis of methane from CO and CO<sub>2</sub> by hydrogenation is now considered as a promising route in effectively storing hydrogen energy as well as sustainably producing fuels and chemicals, while many reaction details involved in such processes, in particular for the hydrogenation of the CO and CO<sub>2</sub> mixture, are not yet adequately understood. As a supplement to our previous works on the hydrogenation of CO and CO<sub>2</sub> into alcohols and hydrocarbons, a thermodynamic consideration is made in this work to evaluate the potential and limit for the synthesis of methane from CO, CO<sub>2</sub>, and their mixture in particular. The results consolidate that in comparison with single CO or CO<sub>2</sub>, their mixture is probably more credible in practice for the production of methane by hydrogenation, where the overall C-based methane yield can be used as the major index to evaluate the process efficiency. The hydrogenation of CO shows a higher equilibrium yield of methane than the hydrogenation of CO<sub>2</sub>, while the overall C-based equilibrium yield of methane for the hydrogenation of the CO and CO<sub>2</sub> mixture just lies in between and decreases almost lineally with the increase of the CO<sub>2</sub>/(CO+CO<sub>2</sub>) molar ratio in the feed, despite the great change in the equilibrium conversions of CO and CO<sub>2</sub> with the feed composition. Nevertheless, an adequate overall C-based equilibrium yield of methane (&gt; 85%) can be achieved at a temperature lower than 400 °C and a pressure higher than 0.1 MPa for the stoichiometric hydrogenation of CO, CO<sub>2</sub>, or their mixture whichever. These results should be beneficial to the design of more efficient catalysts and processes for the hydrogenation of CO/CO<sub>2</sub> to methane.</div></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"52 10","pages":"Pages 1453-1461"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A thermodynamic consideration on the synthesis of methane from CO, CO2, and their mixture by hydrogenation\",\"authors\":\"WANG Han ,&nbsp;GUO Shujia ,&nbsp;QIN Zhangfeng ,&nbsp;LI Zhikai ,&nbsp;WANG Guofu ,&nbsp;DONG Mei ,&nbsp;FAN Weibin ,&nbsp;WANG Jianguo\",\"doi\":\"10.1016/S1872-5813(24)60449-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The synthesis of methane from CO and CO<sub>2</sub> by hydrogenation is now considered as a promising route in effectively storing hydrogen energy as well as sustainably producing fuels and chemicals, while many reaction details involved in such processes, in particular for the hydrogenation of the CO and CO<sub>2</sub> mixture, are not yet adequately understood. As a supplement to our previous works on the hydrogenation of CO and CO<sub>2</sub> into alcohols and hydrocarbons, a thermodynamic consideration is made in this work to evaluate the potential and limit for the synthesis of methane from CO, CO<sub>2</sub>, and their mixture in particular. The results consolidate that in comparison with single CO or CO<sub>2</sub>, their mixture is probably more credible in practice for the production of methane by hydrogenation, where the overall C-based methane yield can be used as the major index to evaluate the process efficiency. The hydrogenation of CO shows a higher equilibrium yield of methane than the hydrogenation of CO<sub>2</sub>, while the overall C-based equilibrium yield of methane for the hydrogenation of the CO and CO<sub>2</sub> mixture just lies in between and decreases almost lineally with the increase of the CO<sub>2</sub>/(CO+CO<sub>2</sub>) molar ratio in the feed, despite the great change in the equilibrium conversions of CO and CO<sub>2</sub> with the feed composition. Nevertheless, an adequate overall C-based equilibrium yield of methane (&gt; 85%) can be achieved at a temperature lower than 400 °C and a pressure higher than 0.1 MPa for the stoichiometric hydrogenation of CO, CO<sub>2</sub>, or their mixture whichever. These results should be beneficial to the design of more efficient catalysts and processes for the hydrogenation of CO/CO<sub>2</sub> to methane.</div></div>\",\"PeriodicalId\":15956,\"journal\":{\"name\":\"燃料化学学报\",\"volume\":\"52 10\",\"pages\":\"Pages 1453-1461\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"燃料化学学报\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1872581324604494\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"燃料化学学报","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872581324604494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

摘要

目前,通过加氢从一氧化碳和二氧化碳合成甲烷被认为是有效储存氢能以及可持续生产燃料和化学品的一条很有前途的途径,但人们对此类过程中涉及的许多反应细节,特别是一氧化碳和二氧化碳混合物的加氢反应,还没有充分的了解。作为对我们之前关于将 CO 和 CO2 加氢转化为酒精和碳氢化合物的研究的补充,本研究从热力学角度评估了从 CO、CO2,特别是它们的混合物合成甲烷的潜力和极限。结果表明,与单一的一氧化碳或二氧化碳相比,它们的混合物在通过氢化生产甲烷的实践中可能更可靠,其中以 C 为基础的甲烷总产量可作为评估工艺效率的主要指标。CO 的氢化比 CO2 的氢化显示出更高的甲烷平衡产率,而 CO 和 CO2 混合物氢化的整体 C 基甲烷平衡产率仅介于两者之间,并且随着进料中 CO2/(CO+CO2)摩尔比的增加而几乎直线下降,尽管 CO 和 CO2 的平衡转化率随进料成分的变化而发生很大变化。不过,在温度低于 400 °C 和压力高于 0.1 MPa 的条件下,对 CO、CO2 或它们的混合物进行化学计量加氢,可以获得足够的以 C 为基础的甲烷总平衡产率(85%)。这些结果将有助于设计更高效的催化剂和工艺,将 CO/CO2 加氢转化为甲烷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A thermodynamic consideration on the synthesis of methane from CO, CO2, and their mixture by hydrogenation
The synthesis of methane from CO and CO2 by hydrogenation is now considered as a promising route in effectively storing hydrogen energy as well as sustainably producing fuels and chemicals, while many reaction details involved in such processes, in particular for the hydrogenation of the CO and CO2 mixture, are not yet adequately understood. As a supplement to our previous works on the hydrogenation of CO and CO2 into alcohols and hydrocarbons, a thermodynamic consideration is made in this work to evaluate the potential and limit for the synthesis of methane from CO, CO2, and their mixture in particular. The results consolidate that in comparison with single CO or CO2, their mixture is probably more credible in practice for the production of methane by hydrogenation, where the overall C-based methane yield can be used as the major index to evaluate the process efficiency. The hydrogenation of CO shows a higher equilibrium yield of methane than the hydrogenation of CO2, while the overall C-based equilibrium yield of methane for the hydrogenation of the CO and CO2 mixture just lies in between and decreases almost lineally with the increase of the CO2/(CO+CO2) molar ratio in the feed, despite the great change in the equilibrium conversions of CO and CO2 with the feed composition. Nevertheless, an adequate overall C-based equilibrium yield of methane (> 85%) can be achieved at a temperature lower than 400 °C and a pressure higher than 0.1 MPa for the stoichiometric hydrogenation of CO, CO2, or their mixture whichever. These results should be beneficial to the design of more efficient catalysts and processes for the hydrogenation of CO/CO2 to methane.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
燃料化学学报
燃料化学学报 Chemical Engineering-Chemical Engineering (all)
CiteScore
2.80
自引率
0.00%
发文量
5825
期刊介绍: Journal of Fuel Chemistry and Technology (Ranliao Huaxue Xuebao) is a Chinese Academy of Sciences(CAS) journal started in 1956, sponsored by the Chinese Chemical Society and the Institute of Coal Chemistry, Chinese Academy of Sciences(CAS). The journal is published bimonthly by Science Press in China and widely distributed in about 20 countries. Journal of Fuel Chemistry and Technology publishes reports of both basic and applied research in the chemistry and chemical engineering of many energy sources, including that involved in the nature, processing and utilization of coal, petroleum, oil shale, natural gas, biomass and synfuels, as well as related subjects of increasing interest such as C1 chemistry, pollutions control and new catalytic materials. Types of publications include original research articles, short communications, research notes and reviews. Both domestic and international contributors are welcome. Manuscripts written in Chinese or English will be accepted. Additional English titles, abstracts and key words should be included in Chinese manuscripts. All manuscripts are subject to critical review by the editorial committee, which is composed of about 10 foreign and 50 Chinese experts in fuel science. Journal of Fuel Chemistry and Technology has been a source of primary research work in fuel chemistry as a Chinese core scientific periodical.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信