Sahroz Khan , Nóra Liptai , István J. Kovács , Yana Fedortchouk , Tivadar M. Tóth
{"title":"卡普瓦尔克拉通金伯利岩橄榄石间的异质水分布:金伯利岩金刚石贫瘠性质的制约因素","authors":"Sahroz Khan , Nóra Liptai , István J. Kovács , Yana Fedortchouk , Tivadar M. Tóth","doi":"10.1016/j.gr.2024.10.004","DOIUrl":null,"url":null,"abstract":"<div><div>Nominally anhydrous mantle minerals (olivine, pyroxenes, garnets, etc.) in 11 peridotite xenoliths from four different uneconomic and economic Kaapvaal Craton kimberlite pipes (Matsoku, Thaba Putsoa, Pipe 200 and Bultfontein) have been investigated using Fourier transform infrared spectroscopy (FTIR). All xenoliths contain accessories of garnet, diopside, chromite, and phlogopite. High orthopyroxene content (>30 mol vol.%) in most xenoliths from all kimberlites and its interconnected channel-like nature hint towards hydrous siliceous fluid metasomatism. Peridotite xenoliths from uneconomic kimberlites show development of phlogopite and clinopyroxene (± chromite) forming veins and in garnet rims suggesting metasomatism by alkaline silico-carbonatite (possibly kimberlite-related) melt. The xenoliths contain significant H<sub>2</sub>O in olivine (17–62 ppm), orthopyroxene (21–230 ppm), and clinopyroxene (87–833 ppm), whereas garnets are dry and only show IR absorbance bands at > 3,670 cm<sup>−1</sup> for contamination of hydrous minerals. Compared to the economic kimberlites in the Kaapvaal Craton, the uneconomic kimberlite xenoliths from this study have lower orthopyroxene and olivine H<sub>2</sub>O content. In the xenoliths affected by garnet breakdown metasomatism, the H<sub>2</sub>O content of orthopyroxene and olivine is higher and lower, respectively. The structural hydroxyl distribution profile across olivine and higher inter-mineral water partition coefficient, suggest diffusion of hydrogen and possible re-equilibration. Statistical analysis of the olivine spectra suggests that hydrogen bands at 3540, 3624, 3638, and 3672 cm<sup>−1</sup> are a good discriminant of economic and uneconomic kimberlites and in literature, they are associated with metasomatism, weathering-associated processes, high water activity, and oxygen fugacity. The lower water concentration in xenoliths from uneconomic kimberlite from the margin of the craton than the economic kimberlites from the interior of the Kaapvaal Craton and identified metasomatism hints towards dehydration of xenoliths by water-poor and CO<sub>2</sub>-rich melts in tectonized cross-lithospheric zones causing diamond resorption and may be responsible for the diamond-poor nature of uneconomic kimberlites in northern Lesotho.</div></div>","PeriodicalId":12761,"journal":{"name":"Gondwana Research","volume":"137 ","pages":"Pages 331-348"},"PeriodicalIF":7.2000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heterogeneous water distribution in between peridotite xenoliths from Kaapvaal Craton kimberlites: Constraints on diamond barren nature of kimberlites\",\"authors\":\"Sahroz Khan , Nóra Liptai , István J. Kovács , Yana Fedortchouk , Tivadar M. Tóth\",\"doi\":\"10.1016/j.gr.2024.10.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Nominally anhydrous mantle minerals (olivine, pyroxenes, garnets, etc.) in 11 peridotite xenoliths from four different uneconomic and economic Kaapvaal Craton kimberlite pipes (Matsoku, Thaba Putsoa, Pipe 200 and Bultfontein) have been investigated using Fourier transform infrared spectroscopy (FTIR). All xenoliths contain accessories of garnet, diopside, chromite, and phlogopite. High orthopyroxene content (>30 mol vol.%) in most xenoliths from all kimberlites and its interconnected channel-like nature hint towards hydrous siliceous fluid metasomatism. Peridotite xenoliths from uneconomic kimberlites show development of phlogopite and clinopyroxene (± chromite) forming veins and in garnet rims suggesting metasomatism by alkaline silico-carbonatite (possibly kimberlite-related) melt. The xenoliths contain significant H<sub>2</sub>O in olivine (17–62 ppm), orthopyroxene (21–230 ppm), and clinopyroxene (87–833 ppm), whereas garnets are dry and only show IR absorbance bands at > 3,670 cm<sup>−1</sup> for contamination of hydrous minerals. Compared to the economic kimberlites in the Kaapvaal Craton, the uneconomic kimberlite xenoliths from this study have lower orthopyroxene and olivine H<sub>2</sub>O content. In the xenoliths affected by garnet breakdown metasomatism, the H<sub>2</sub>O content of orthopyroxene and olivine is higher and lower, respectively. The structural hydroxyl distribution profile across olivine and higher inter-mineral water partition coefficient, suggest diffusion of hydrogen and possible re-equilibration. Statistical analysis of the olivine spectra suggests that hydrogen bands at 3540, 3624, 3638, and 3672 cm<sup>−1</sup> are a good discriminant of economic and uneconomic kimberlites and in literature, they are associated with metasomatism, weathering-associated processes, high water activity, and oxygen fugacity. The lower water concentration in xenoliths from uneconomic kimberlite from the margin of the craton than the economic kimberlites from the interior of the Kaapvaal Craton and identified metasomatism hints towards dehydration of xenoliths by water-poor and CO<sub>2</sub>-rich melts in tectonized cross-lithospheric zones causing diamond resorption and may be responsible for the diamond-poor nature of uneconomic kimberlites in northern Lesotho.</div></div>\",\"PeriodicalId\":12761,\"journal\":{\"name\":\"Gondwana Research\",\"volume\":\"137 \",\"pages\":\"Pages 331-348\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gondwana Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1342937X24002880\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gondwana Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1342937X24002880","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Heterogeneous water distribution in between peridotite xenoliths from Kaapvaal Craton kimberlites: Constraints on diamond barren nature of kimberlites
Nominally anhydrous mantle minerals (olivine, pyroxenes, garnets, etc.) in 11 peridotite xenoliths from four different uneconomic and economic Kaapvaal Craton kimberlite pipes (Matsoku, Thaba Putsoa, Pipe 200 and Bultfontein) have been investigated using Fourier transform infrared spectroscopy (FTIR). All xenoliths contain accessories of garnet, diopside, chromite, and phlogopite. High orthopyroxene content (>30 mol vol.%) in most xenoliths from all kimberlites and its interconnected channel-like nature hint towards hydrous siliceous fluid metasomatism. Peridotite xenoliths from uneconomic kimberlites show development of phlogopite and clinopyroxene (± chromite) forming veins and in garnet rims suggesting metasomatism by alkaline silico-carbonatite (possibly kimberlite-related) melt. The xenoliths contain significant H2O in olivine (17–62 ppm), orthopyroxene (21–230 ppm), and clinopyroxene (87–833 ppm), whereas garnets are dry and only show IR absorbance bands at > 3,670 cm−1 for contamination of hydrous minerals. Compared to the economic kimberlites in the Kaapvaal Craton, the uneconomic kimberlite xenoliths from this study have lower orthopyroxene and olivine H2O content. In the xenoliths affected by garnet breakdown metasomatism, the H2O content of orthopyroxene and olivine is higher and lower, respectively. The structural hydroxyl distribution profile across olivine and higher inter-mineral water partition coefficient, suggest diffusion of hydrogen and possible re-equilibration. Statistical analysis of the olivine spectra suggests that hydrogen bands at 3540, 3624, 3638, and 3672 cm−1 are a good discriminant of economic and uneconomic kimberlites and in literature, they are associated with metasomatism, weathering-associated processes, high water activity, and oxygen fugacity. The lower water concentration in xenoliths from uneconomic kimberlite from the margin of the craton than the economic kimberlites from the interior of the Kaapvaal Craton and identified metasomatism hints towards dehydration of xenoliths by water-poor and CO2-rich melts in tectonized cross-lithospheric zones causing diamond resorption and may be responsible for the diamond-poor nature of uneconomic kimberlites in northern Lesotho.
期刊介绍:
Gondwana Research (GR) is an International Journal aimed to promote high quality research publications on all topics related to solid Earth, particularly with reference to the origin and evolution of continents, continental assemblies and their resources. GR is an "all earth science" journal with no restrictions on geological time, terrane or theme and covers a wide spectrum of topics in geosciences such as geology, geomorphology, palaeontology, structure, petrology, geochemistry, stable isotopes, geochronology, economic geology, exploration geology, engineering geology, geophysics, and environmental geology among other themes, and provides an appropriate forum to integrate studies from different disciplines and different terrains. In addition to regular articles and thematic issues, the journal invites high profile state-of-the-art reviews on thrust area topics for its column, ''GR FOCUS''. Focus articles include short biographies and photographs of the authors. Short articles (within ten printed pages) for rapid publication reporting important discoveries or innovative models of global interest will be considered under the category ''GR LETTERS''.