四阶非线性薛定谔方程的考奇问题的良好提出性

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Mingjuan Chen , Nan Liu , Yaqing Wang
{"title":"四阶非线性薛定谔方程的考奇问题的良好提出性","authors":"Mingjuan Chen ,&nbsp;Nan Liu ,&nbsp;Yaqing Wang","doi":"10.1016/j.aml.2024.109340","DOIUrl":null,"url":null,"abstract":"<div><div>The sharp local well-posedness for the one dimensional fourth-order nonlinear Schrödinger equation is established in the Sobolev space <span><math><mrow><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span> for <span><math><mrow><mi>s</mi><mo>≥</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></math></span>, which improves the results in Huo and Jia (2007). In addition, we prove that this equation cannot be solved by an iteration scheme based on the Duhamel formula in <span><math><mrow><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span> for <span><math><mrow><mi>s</mi><mo>&lt;</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></math></span>. Our method relies upon the Bourgain space and a crucial bilinear estimate, which avoids the tedious classification of the location to the highest dispersion modulation.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"160 ","pages":"Article 109340"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Well-posedness of the Cauchy problem for the fourth-order nonlinear Schrödinger equation\",\"authors\":\"Mingjuan Chen ,&nbsp;Nan Liu ,&nbsp;Yaqing Wang\",\"doi\":\"10.1016/j.aml.2024.109340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The sharp local well-posedness for the one dimensional fourth-order nonlinear Schrödinger equation is established in the Sobolev space <span><math><mrow><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span> for <span><math><mrow><mi>s</mi><mo>≥</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></math></span>, which improves the results in Huo and Jia (2007). In addition, we prove that this equation cannot be solved by an iteration scheme based on the Duhamel formula in <span><math><mrow><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span> for <span><math><mrow><mi>s</mi><mo>&lt;</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></math></span>. Our method relies upon the Bourgain space and a crucial bilinear estimate, which avoids the tedious classification of the location to the highest dispersion modulation.</div></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"160 \",\"pages\":\"Article 109340\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893965924003604\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965924003604","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在 Sobolev 空间 Hs(R) 中建立了 s≥12 时一维四阶非线性薛定谔方程的尖锐局部好求解性,这改进了霍和贾 (2007) 的结果。此外,我们还证明了在 s<12 条件下,基于 Hs(R) 中杜哈梅尔公式的迭代方案无法求解该方程。我们的方法依赖于布尔干空间和关键的双线性估计,避免了对最高色散调制位置的繁琐分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Well-posedness of the Cauchy problem for the fourth-order nonlinear Schrödinger equation
The sharp local well-posedness for the one dimensional fourth-order nonlinear Schrödinger equation is established in the Sobolev space Hs(R) for s12, which improves the results in Huo and Jia (2007). In addition, we prove that this equation cannot be solved by an iteration scheme based on the Duhamel formula in Hs(R) for s<12. Our method relies upon the Bourgain space and a crucial bilinear estimate, which avoids the tedious classification of the location to the highest dispersion modulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信