用于双曲守恒定律和高度振荡问题的新型混合三角 WENO 方案

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Liang Li , YanMeng Wang , Jun Zhu
{"title":"用于双曲守恒定律和高度振荡问题的新型混合三角 WENO 方案","authors":"Liang Li ,&nbsp;YanMeng Wang ,&nbsp;Jun Zhu","doi":"10.1016/j.aml.2024.109339","DOIUrl":null,"url":null,"abstract":"<div><div>In the conventional hybrid WENO scheme, the computation of extremum points of high-order polynomials is required, which poses challenges when extending this methodology to the hybrid trigonometric WENO (TWENO) scheme due to the difficulties in determining the extremum points of high-order trigonometric polynomials. In this paper, we propose a novel hybrid strategy that circumvents the necessity of finding extremum points of high-degree polynomials, requiring only the extremum points of three lower-order polynomials. Based on this hybrid strategy, two hybrid TWENO schemes are designed, both of which significantly improve the numerical simulation performance of the TWENO scheme while saving approximately 80% of the computation time.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"160 ","pages":"Article 109339"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new hybrid trigonometric WENO scheme for hyperbolic conservation laws and highly oscillatory problems\",\"authors\":\"Liang Li ,&nbsp;YanMeng Wang ,&nbsp;Jun Zhu\",\"doi\":\"10.1016/j.aml.2024.109339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the conventional hybrid WENO scheme, the computation of extremum points of high-order polynomials is required, which poses challenges when extending this methodology to the hybrid trigonometric WENO (TWENO) scheme due to the difficulties in determining the extremum points of high-order trigonometric polynomials. In this paper, we propose a novel hybrid strategy that circumvents the necessity of finding extremum points of high-degree polynomials, requiring only the extremum points of three lower-order polynomials. Based on this hybrid strategy, two hybrid TWENO schemes are designed, both of which significantly improve the numerical simulation performance of the TWENO scheme while saving approximately 80% of the computation time.</div></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"160 \",\"pages\":\"Article 109339\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893965924003598\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965924003598","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在传统的混合 WENO 方案中,需要计算高阶多项式的极值点,由于难以确定高阶三角多项式的极值点,这给将该方法扩展到混合三角 WENO(TWENO)方案带来了挑战。在本文中,我们提出了一种新颖的混合策略,它规避了寻找高阶多项式极值点的必要性,只需要三个低阶多项式的极值点。基于这种混合策略,我们设计了两种混合 TWENO 方案,这两种方案都显著提高了 TWENO 方案的数值模拟性能,同时节省了约 80% 的计算时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new hybrid trigonometric WENO scheme for hyperbolic conservation laws and highly oscillatory problems
In the conventional hybrid WENO scheme, the computation of extremum points of high-order polynomials is required, which poses challenges when extending this methodology to the hybrid trigonometric WENO (TWENO) scheme due to the difficulties in determining the extremum points of high-order trigonometric polynomials. In this paper, we propose a novel hybrid strategy that circumvents the necessity of finding extremum points of high-degree polynomials, requiring only the extremum points of three lower-order polynomials. Based on this hybrid strategy, two hybrid TWENO schemes are designed, both of which significantly improve the numerical simulation performance of the TWENO scheme while saving approximately 80% of the computation time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信