{"title":"有界域中有吸引力的玻色-爱因斯坦凝聚体边界附近的质量浓度","authors":"Chen Yang, Chun-Lei Tang","doi":"10.1016/j.aml.2024.109338","DOIUrl":null,"url":null,"abstract":"<div><div>We are devoted to studying the ground states of trapped attractive Bose–Einstein condensates in a bounded domain <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>, which can be described by minimizers of <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-critical constraint Gross–Pitaevskii energy functional. It has been shown that there is a threshold <span><math><mrow><msup><mrow><mi>a</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>></mo><mn>0</mn></mrow></math></span> such that minimizers exist if and only if the interaction strength <span><math><mi>a</mi></math></span> satisfies <span><math><mrow><mi>a</mi><mo><</mo><msup><mrow><mi>a</mi></mrow><mrow><mo>∗</mo></mrow></msup></mrow></math></span>. In present paper, we prove that when the trapping potential <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> attains its flattest global minimum only at the boundary of <span><math><mi>Ω</mi></math></span>, the mass of minimizers must concentrate near the boundary of <span><math><mi>Ω</mi></math></span> as <span><math><mrow><mi>a</mi><mo>↗</mo><msup><mrow><mi>a</mi></mrow><mrow><mo>∗</mo></mrow></msup></mrow></math></span>. This result extends the work of Luo and Zhu (2019).</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"160 ","pages":"Article 109338"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mass concentration near the boundary for attractive Bose–Einstein condensates in bounded domains\",\"authors\":\"Chen Yang, Chun-Lei Tang\",\"doi\":\"10.1016/j.aml.2024.109338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We are devoted to studying the ground states of trapped attractive Bose–Einstein condensates in a bounded domain <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>, which can be described by minimizers of <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-critical constraint Gross–Pitaevskii energy functional. It has been shown that there is a threshold <span><math><mrow><msup><mrow><mi>a</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>></mo><mn>0</mn></mrow></math></span> such that minimizers exist if and only if the interaction strength <span><math><mi>a</mi></math></span> satisfies <span><math><mrow><mi>a</mi><mo><</mo><msup><mrow><mi>a</mi></mrow><mrow><mo>∗</mo></mrow></msup></mrow></math></span>. In present paper, we prove that when the trapping potential <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> attains its flattest global minimum only at the boundary of <span><math><mi>Ω</mi></math></span>, the mass of minimizers must concentrate near the boundary of <span><math><mi>Ω</mi></math></span> as <span><math><mrow><mi>a</mi><mo>↗</mo><msup><mrow><mi>a</mi></mrow><mrow><mo>∗</mo></mrow></msup></mrow></math></span>. This result extends the work of Luo and Zhu (2019).</div></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"160 \",\"pages\":\"Article 109338\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893965924003586\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965924003586","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Mass concentration near the boundary for attractive Bose–Einstein condensates in bounded domains
We are devoted to studying the ground states of trapped attractive Bose–Einstein condensates in a bounded domain , which can be described by minimizers of -critical constraint Gross–Pitaevskii energy functional. It has been shown that there is a threshold such that minimizers exist if and only if the interaction strength satisfies . In present paper, we prove that when the trapping potential attains its flattest global minimum only at the boundary of , the mass of minimizers must concentrate near the boundary of as . This result extends the work of Luo and Zhu (2019).
期刊介绍:
The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.