Hai Liu , Suyu Huang , Li Zhao , Guixiang Wang , Li Liu , Chengyue Bai
{"title":"基于离散楔形变换正则化的红外光谱解卷积技术","authors":"Hai Liu , Suyu Huang , Li Zhao , Guixiang Wang , Li Liu , Chengyue Bai","doi":"10.1016/j.infrared.2024.105593","DOIUrl":null,"url":null,"abstract":"<div><div>Infrared spectral data often exhibit band overlap and random noise when it is applied to recognize the unknown chemical materials. To address these issues, a novel regularization-based spectral deconvolution method for unknown chemical material detection (DWTSD) was proposed in this paper. The discrete wedgelet transform is introduced to analyze the difference between the latent infrared spectrum and the noisy infrared spectrum. The instrument response function is also needed to estimate simultaneously with the latent infrared spectrum. Therefore, the improved total variation regularization is introduced to constrain the smoothness of the spectral lines. Then the split Bregman iteration algorithm is also introduced to optimize the cost function. The proposed DWTSD method is simple and offers good performance with low computational load. Experimental results on simulated and real infrared spectrums show that the proposed DWTSD method has good performance in noise reduction and spectral detail generation. With the proposed methodology, the problem of instrument aging can be largely eliminated, making the reconstruction of infrared spectra a more convenient tool for the extraction of features of an unknown material and their interpretation. The applicability of the method transcends infrared spectroscopy, offering utility in a spectrum of spectroscopic analyses.</div></div>","PeriodicalId":13549,"journal":{"name":"Infrared Physics & Technology","volume":"143 ","pages":"Article 105593"},"PeriodicalIF":3.1000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discrete wedgelet transform regularization-based spectral deconvolution for infrared spectroscopy\",\"authors\":\"Hai Liu , Suyu Huang , Li Zhao , Guixiang Wang , Li Liu , Chengyue Bai\",\"doi\":\"10.1016/j.infrared.2024.105593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Infrared spectral data often exhibit band overlap and random noise when it is applied to recognize the unknown chemical materials. To address these issues, a novel regularization-based spectral deconvolution method for unknown chemical material detection (DWTSD) was proposed in this paper. The discrete wedgelet transform is introduced to analyze the difference between the latent infrared spectrum and the noisy infrared spectrum. The instrument response function is also needed to estimate simultaneously with the latent infrared spectrum. Therefore, the improved total variation regularization is introduced to constrain the smoothness of the spectral lines. Then the split Bregman iteration algorithm is also introduced to optimize the cost function. The proposed DWTSD method is simple and offers good performance with low computational load. Experimental results on simulated and real infrared spectrums show that the proposed DWTSD method has good performance in noise reduction and spectral detail generation. With the proposed methodology, the problem of instrument aging can be largely eliminated, making the reconstruction of infrared spectra a more convenient tool for the extraction of features of an unknown material and their interpretation. The applicability of the method transcends infrared spectroscopy, offering utility in a spectrum of spectroscopic analyses.</div></div>\",\"PeriodicalId\":13549,\"journal\":{\"name\":\"Infrared Physics & Technology\",\"volume\":\"143 \",\"pages\":\"Article 105593\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infrared Physics & Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1350449524004778\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infrared Physics & Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350449524004778","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Discrete wedgelet transform regularization-based spectral deconvolution for infrared spectroscopy
Infrared spectral data often exhibit band overlap and random noise when it is applied to recognize the unknown chemical materials. To address these issues, a novel regularization-based spectral deconvolution method for unknown chemical material detection (DWTSD) was proposed in this paper. The discrete wedgelet transform is introduced to analyze the difference between the latent infrared spectrum and the noisy infrared spectrum. The instrument response function is also needed to estimate simultaneously with the latent infrared spectrum. Therefore, the improved total variation regularization is introduced to constrain the smoothness of the spectral lines. Then the split Bregman iteration algorithm is also introduced to optimize the cost function. The proposed DWTSD method is simple and offers good performance with low computational load. Experimental results on simulated and real infrared spectrums show that the proposed DWTSD method has good performance in noise reduction and spectral detail generation. With the proposed methodology, the problem of instrument aging can be largely eliminated, making the reconstruction of infrared spectra a more convenient tool for the extraction of features of an unknown material and their interpretation. The applicability of the method transcends infrared spectroscopy, offering utility in a spectrum of spectroscopic analyses.
期刊介绍:
The Journal covers the entire field of infrared physics and technology: theory, experiment, application, devices and instrumentation. Infrared'' is defined as covering the near, mid and far infrared (terahertz) regions from 0.75um (750nm) to 1mm (300GHz.) Submissions in the 300GHz to 100GHz region may be accepted at the editors discretion if their content is relevant to shorter wavelengths. Submissions must be primarily concerned with and directly relevant to this spectral region.
Its core topics can be summarized as the generation, propagation and detection, of infrared radiation; the associated optics, materials and devices; and its use in all fields of science, industry, engineering and medicine.
Infrared techniques occur in many different fields, notably spectroscopy and interferometry; material characterization and processing; atmospheric physics, astronomy and space research. Scientific aspects include lasers, quantum optics, quantum electronics, image processing and semiconductor physics. Some important applications are medical diagnostics and treatment, industrial inspection and environmental monitoring.