Fride Høistad Schei , Mie Prik Arnberg , John-Arvid Grytnes , Maren Stien Johanesen , Jørund Johansen , Anna Birgitte Milford , Anders Røynstrand , Mari Mette Tollefsrud
{"title":"白蜡树枯死:是单一物种的灾难,还是地面植物区系生态效应的连环效应?","authors":"Fride Høistad Schei , Mie Prik Arnberg , John-Arvid Grytnes , Maren Stien Johanesen , Jørund Johansen , Anna Birgitte Milford , Anders Røynstrand , Mari Mette Tollefsrud","doi":"10.1016/j.foreco.2024.122322","DOIUrl":null,"url":null,"abstract":"<div><div>Climate change and human activities have accelerated the spread of non-native species, including forest pests and pathogens, significantly contributing to global biodiversity loss. Pathogens pose a significant threat to forest ecosystems due to a lack of coevolution with native hosts, resulting in ineffective defence mechanisms and severe consequences for the affected tree species. Ash dieback, caused by the fungus <em>Hymenoscyphus fraxineus</em>, is a relatively new invasive forest pathogen threatening ash (<em>Fraxinus excelsior</em>) with mortality rates in northern Europe reaching up to 80 %. The loss of ash due to dieback has severe ecological implications, potentially leading to an extinction cascade as ash provides crucial habitats and resources for many organisms. Despite this, the consequences of ash dieback on associated communities are largely unknown. To address this, we analysed changes in species richness, vegetation structure, and composition in 82 permanent vegetation plots across 23 Norwegian woodlands. We compared data collected before and 10–14 years after the emergence of ash dieback. In these woodlands, ash significantly declined in cover, leading to changes in tree species composition and facilitating the establishment of other woody tree species like hazel (<em>Corylus avellana</em>) and the invasive species sycamore (<em>Acer pseudoplatanus</em>). Despite these changes in the tree species composition, no significant alterations were observed in the understory plant community, indicating a degree of ecosystem resilience or a lagging community response. At this point, and with our focus on the vascular plants, we do not find support for cascading effects due to ash dieback. However, our findings demonstrate that one invasive species is facilitating the expansion of another, raising concerns about potential ecological imbalance and cascading effects in the future.</div></div>","PeriodicalId":12350,"journal":{"name":"Forest Ecology and Management","volume":"572 ","pages":"Article 122322"},"PeriodicalIF":3.7000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ash dieback: A single-species catastrophe or a cascade of ecological effects in the ground flora?\",\"authors\":\"Fride Høistad Schei , Mie Prik Arnberg , John-Arvid Grytnes , Maren Stien Johanesen , Jørund Johansen , Anna Birgitte Milford , Anders Røynstrand , Mari Mette Tollefsrud\",\"doi\":\"10.1016/j.foreco.2024.122322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Climate change and human activities have accelerated the spread of non-native species, including forest pests and pathogens, significantly contributing to global biodiversity loss. Pathogens pose a significant threat to forest ecosystems due to a lack of coevolution with native hosts, resulting in ineffective defence mechanisms and severe consequences for the affected tree species. Ash dieback, caused by the fungus <em>Hymenoscyphus fraxineus</em>, is a relatively new invasive forest pathogen threatening ash (<em>Fraxinus excelsior</em>) with mortality rates in northern Europe reaching up to 80 %. The loss of ash due to dieback has severe ecological implications, potentially leading to an extinction cascade as ash provides crucial habitats and resources for many organisms. Despite this, the consequences of ash dieback on associated communities are largely unknown. To address this, we analysed changes in species richness, vegetation structure, and composition in 82 permanent vegetation plots across 23 Norwegian woodlands. We compared data collected before and 10–14 years after the emergence of ash dieback. In these woodlands, ash significantly declined in cover, leading to changes in tree species composition and facilitating the establishment of other woody tree species like hazel (<em>Corylus avellana</em>) and the invasive species sycamore (<em>Acer pseudoplatanus</em>). Despite these changes in the tree species composition, no significant alterations were observed in the understory plant community, indicating a degree of ecosystem resilience or a lagging community response. At this point, and with our focus on the vascular plants, we do not find support for cascading effects due to ash dieback. However, our findings demonstrate that one invasive species is facilitating the expansion of another, raising concerns about potential ecological imbalance and cascading effects in the future.</div></div>\",\"PeriodicalId\":12350,\"journal\":{\"name\":\"Forest Ecology and Management\",\"volume\":\"572 \",\"pages\":\"Article 122322\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forest Ecology and Management\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378112724006340\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forest Ecology and Management","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378112724006340","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
Ash dieback: A single-species catastrophe or a cascade of ecological effects in the ground flora?
Climate change and human activities have accelerated the spread of non-native species, including forest pests and pathogens, significantly contributing to global biodiversity loss. Pathogens pose a significant threat to forest ecosystems due to a lack of coevolution with native hosts, resulting in ineffective defence mechanisms and severe consequences for the affected tree species. Ash dieback, caused by the fungus Hymenoscyphus fraxineus, is a relatively new invasive forest pathogen threatening ash (Fraxinus excelsior) with mortality rates in northern Europe reaching up to 80 %. The loss of ash due to dieback has severe ecological implications, potentially leading to an extinction cascade as ash provides crucial habitats and resources for many organisms. Despite this, the consequences of ash dieback on associated communities are largely unknown. To address this, we analysed changes in species richness, vegetation structure, and composition in 82 permanent vegetation plots across 23 Norwegian woodlands. We compared data collected before and 10–14 years after the emergence of ash dieback. In these woodlands, ash significantly declined in cover, leading to changes in tree species composition and facilitating the establishment of other woody tree species like hazel (Corylus avellana) and the invasive species sycamore (Acer pseudoplatanus). Despite these changes in the tree species composition, no significant alterations were observed in the understory plant community, indicating a degree of ecosystem resilience or a lagging community response. At this point, and with our focus on the vascular plants, we do not find support for cascading effects due to ash dieback. However, our findings demonstrate that one invasive species is facilitating the expansion of another, raising concerns about potential ecological imbalance and cascading effects in the future.
期刊介绍:
Forest Ecology and Management publishes scientific articles linking forest ecology with forest management, focusing on the application of biological, ecological and social knowledge to the management and conservation of plantations and natural forests. The scope of the journal includes all forest ecosystems of the world.
A peer-review process ensures the quality and international interest of the manuscripts accepted for publication. The journal encourages communication between scientists in disparate fields who share a common interest in ecology and forest management, bridging the gap between research workers and forest managers.
We encourage submission of papers that will have the strongest interest and value to the Journal''s international readership. Some key features of papers with strong interest include:
1. Clear connections between the ecology and management of forests;
2. Novel ideas or approaches to important challenges in forest ecology and management;
3. Studies that address a population of interest beyond the scale of single research sites, Three key points in the design of forest experiments, Forest Ecology and Management 255 (2008) 2022-2023);
4. Review Articles on timely, important topics. Authors are welcome to contact one of the editors to discuss the suitability of a potential review manuscript.
The Journal encourages proposals for special issues examining important areas of forest ecology and management. Potential guest editors should contact any of the Editors to begin discussions about topics, potential papers, and other details.