{"title":"在太阳能发电比例较大的德国,夏季低功率生产极端情况更多","authors":"Linh Ho-Tran , Stephanie Fiedler","doi":"10.1016/j.solener.2024.112979","DOIUrl":null,"url":null,"abstract":"<div><div>The share of renewable energy in Germany is increasing to meet the climate-neutral targets in 2050. Weather-driven anomalous in renewable power production thus can pose greater challenges in balancing electricity supply and demand. This study investigates the seasonal differences in extreme events in photovoltaic (PV) plus wind power production in Germany for installed capacities for the present and 2050. The results indicate an increase in such extreme events in the summer half-year, mostly pronounced in May. Extremely low production with a duration of 14 days in winter is associated with atmospheric blocking, with very low wind power production anomalies of up to −37%. Summertime extremely low production is associated with stationary cyclonic weather patterns, with similar reductions in both energy sources of up to −19%. Case studies illustrate the dependency of the benefits of cross-border electricity transmission lines on the prevailing wind direction. North–South transmission lines are beneficial when an anticyclone moved from the Northwest to Germany, whereas West-East transmission lines are beneficial when a cyclone moved from the Southwest to Germany. The results imply an increased risk of extremely low power production during future summers in Germany and suggest monitoring sequences of different weather patterns for the energy sector.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"283 ","pages":"Article 112979"},"PeriodicalIF":6.0000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"More summertime low-power production extremes in Germany with a larger solar power share\",\"authors\":\"Linh Ho-Tran , Stephanie Fiedler\",\"doi\":\"10.1016/j.solener.2024.112979\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The share of renewable energy in Germany is increasing to meet the climate-neutral targets in 2050. Weather-driven anomalous in renewable power production thus can pose greater challenges in balancing electricity supply and demand. This study investigates the seasonal differences in extreme events in photovoltaic (PV) plus wind power production in Germany for installed capacities for the present and 2050. The results indicate an increase in such extreme events in the summer half-year, mostly pronounced in May. Extremely low production with a duration of 14 days in winter is associated with atmospheric blocking, with very low wind power production anomalies of up to −37%. Summertime extremely low production is associated with stationary cyclonic weather patterns, with similar reductions in both energy sources of up to −19%. Case studies illustrate the dependency of the benefits of cross-border electricity transmission lines on the prevailing wind direction. North–South transmission lines are beneficial when an anticyclone moved from the Northwest to Germany, whereas West-East transmission lines are beneficial when a cyclone moved from the Southwest to Germany. The results imply an increased risk of extremely low power production during future summers in Germany and suggest monitoring sequences of different weather patterns for the energy sector.</div></div>\",\"PeriodicalId\":428,\"journal\":{\"name\":\"Solar Energy\",\"volume\":\"283 \",\"pages\":\"Article 112979\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038092X24006741\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038092X24006741","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
More summertime low-power production extremes in Germany with a larger solar power share
The share of renewable energy in Germany is increasing to meet the climate-neutral targets in 2050. Weather-driven anomalous in renewable power production thus can pose greater challenges in balancing electricity supply and demand. This study investigates the seasonal differences in extreme events in photovoltaic (PV) plus wind power production in Germany for installed capacities for the present and 2050. The results indicate an increase in such extreme events in the summer half-year, mostly pronounced in May. Extremely low production with a duration of 14 days in winter is associated with atmospheric blocking, with very low wind power production anomalies of up to −37%. Summertime extremely low production is associated with stationary cyclonic weather patterns, with similar reductions in both energy sources of up to −19%. Case studies illustrate the dependency of the benefits of cross-border electricity transmission lines on the prevailing wind direction. North–South transmission lines are beneficial when an anticyclone moved from the Northwest to Germany, whereas West-East transmission lines are beneficial when a cyclone moved from the Southwest to Germany. The results imply an increased risk of extremely low power production during future summers in Germany and suggest monitoring sequences of different weather patterns for the energy sector.
期刊介绍:
Solar Energy welcomes manuscripts presenting information not previously published in journals on any aspect of solar energy research, development, application, measurement or policy. The term "solar energy" in this context includes the indirect uses such as wind energy and biomass