超声波辅助纳米乳液浸渍生物活性多糖薄膜的结构-性能关系,用于提高蘑菇的货架期

IF 8.5 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY
{"title":"超声波辅助纳米乳液浸渍生物活性多糖薄膜的结构-性能关系,用于提高蘑菇的货架期","authors":"","doi":"10.1016/j.fpsl.2024.101372","DOIUrl":null,"url":null,"abstract":"<div><div>This study aimed to develop bioactive nanoemulsion (NE)-impregnated polysaccharide films to extend the shelf life of mushrooms. A stable and well-dispersed NE was prepared using 5 wt% soy protein (SP) and 10 % (v/v) lavender essential oil (LEO) through 10 min of ultrasound treatment, resulting in a droplet size of 152.3 nm, a polydispersity index (PDI) of 0.17, and a ζ-potential of −43.4 mV. Two types of films were prepared by incorporating 5 % and 10 % (v/v) SP/LEO NE into a curdlan (CD) and chitosan (CS) composite matrix, forming CD-CS-NE1 and CD-CS-NE2 films, respectively. The CD-CS-NE2 films possessed the highest tensile strength (14.5 MPa) and elongation at break (140 %). FTIR and molecular docking studies confirmed strong intermolecular interactions between the CD, CS, and NE components. The antibacterial activity of the NE-impregnated CD-CS films was significantly enhanced, with inhibition zones of 22 mm and 26 mm for <em>Escherichia coli</em> and <em>Staphylococcus aureus</em>, respectively, in the CD-CS-NE2 film. Growth curve and colony-forming unit (CFU) analyses further supported the superior antibacterial performance of the CD-CS-NE2 film. In mushroom storage tests, the CD-CS-NE2 film extended the shelf life of button mushrooms to 12 days and straw mushrooms to 4 days. Additionally, it reduced weight loss to 3 % and 4 % in button and straw mushrooms after 12 and 4 days, respectively. Mushrooms treated with CD-CS-NE2 film maintained higher firmness, with values of 18 N for button mushrooms and 6 N for straw mushrooms. The films effectively suppressed polyphenol oxidase (PPO) activity and browning. Overall, these findings suggest that SP/LEO NE-impregnated CD-CS films have strong potential for improving food preservation and reducing spoilage, particularly in fresh produce like mushrooms.</div></div>","PeriodicalId":12377,"journal":{"name":"Food Packaging and Shelf Life","volume":null,"pages":null},"PeriodicalIF":8.5000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structure-property relationship of ultrasound-assisted nanoemulsion-impregnated bioactive polysaccharide films for enhanced shelf life of mushrooms\",\"authors\":\"\",\"doi\":\"10.1016/j.fpsl.2024.101372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study aimed to develop bioactive nanoemulsion (NE)-impregnated polysaccharide films to extend the shelf life of mushrooms. A stable and well-dispersed NE was prepared using 5 wt% soy protein (SP) and 10 % (v/v) lavender essential oil (LEO) through 10 min of ultrasound treatment, resulting in a droplet size of 152.3 nm, a polydispersity index (PDI) of 0.17, and a ζ-potential of −43.4 mV. Two types of films were prepared by incorporating 5 % and 10 % (v/v) SP/LEO NE into a curdlan (CD) and chitosan (CS) composite matrix, forming CD-CS-NE1 and CD-CS-NE2 films, respectively. The CD-CS-NE2 films possessed the highest tensile strength (14.5 MPa) and elongation at break (140 %). FTIR and molecular docking studies confirmed strong intermolecular interactions between the CD, CS, and NE components. The antibacterial activity of the NE-impregnated CD-CS films was significantly enhanced, with inhibition zones of 22 mm and 26 mm for <em>Escherichia coli</em> and <em>Staphylococcus aureus</em>, respectively, in the CD-CS-NE2 film. Growth curve and colony-forming unit (CFU) analyses further supported the superior antibacterial performance of the CD-CS-NE2 film. In mushroom storage tests, the CD-CS-NE2 film extended the shelf life of button mushrooms to 12 days and straw mushrooms to 4 days. Additionally, it reduced weight loss to 3 % and 4 % in button and straw mushrooms after 12 and 4 days, respectively. Mushrooms treated with CD-CS-NE2 film maintained higher firmness, with values of 18 N for button mushrooms and 6 N for straw mushrooms. The films effectively suppressed polyphenol oxidase (PPO) activity and browning. Overall, these findings suggest that SP/LEO NE-impregnated CD-CS films have strong potential for improving food preservation and reducing spoilage, particularly in fresh produce like mushrooms.</div></div>\",\"PeriodicalId\":12377,\"journal\":{\"name\":\"Food Packaging and Shelf Life\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Packaging and Shelf Life\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214289424001376\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Packaging and Shelf Life","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214289424001376","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在开发生物活性纳米乳液(NE)浸渍多糖薄膜,以延长蘑菇的保质期。使用 5 wt%的大豆蛋白(SP)和 10 %(v/v)的薰衣草精油(LEO),通过 10 分钟的超声处理制备出稳定且分散良好的 NE,其液滴大小为 152.3 nm,多分散指数(PDI)为 0.17,ζ电位为 -43.4 mV。在可得然(CD)和壳聚糖(CS)复合基质中分别加入 5 % 和 10 %(v/v)的 SP/LEO NE,制备出两种类型的薄膜,分别形成 CD-CS-NE1 和 CD-CS-NE2 薄膜。CD-CS-NE2 薄膜具有最高的拉伸强度(14.5 兆帕)和断裂伸长率(140%)。傅立叶变换红外光谱和分子对接研究证实了 CD、CS 和 NE 成分之间强烈的分子间相互作用。浸渍了 NE 的 CD-CS 薄膜的抗菌活性显著增强,CD-CS-NE2 薄膜对大肠杆菌和金黄色葡萄球菌的抑菌区分别为 22 毫米和 26 毫米。生长曲线和菌落形成单位(CFU)分析进一步证明了 CD-CS-NE2 薄膜卓越的抗菌性能。在蘑菇储存测试中,CD-CS-NE2 薄膜将金针菇的保质期延长至 12 天,将草菇的保质期延长至 4 天。此外,在 12 天和 4 天后,它还能将金针菇和草菇的重量损失分别降低到 3% 和 4%。使用 CD-CS-NE2 薄膜处理的蘑菇能保持较高的硬度,金针菇的硬度值为 18 N,草菇的硬度值为 6 N。薄膜有效抑制了多酚氧化酶 (PPO) 活性和褐变。总之,这些研究结果表明,SP/LEO NE 浸渍的 CD-CS 薄膜在改善食品保鲜和减少腐败方面具有很大的潜力,尤其是在蘑菇等新鲜农产品中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structure-property relationship of ultrasound-assisted nanoemulsion-impregnated bioactive polysaccharide films for enhanced shelf life of mushrooms
This study aimed to develop bioactive nanoemulsion (NE)-impregnated polysaccharide films to extend the shelf life of mushrooms. A stable and well-dispersed NE was prepared using 5 wt% soy protein (SP) and 10 % (v/v) lavender essential oil (LEO) through 10 min of ultrasound treatment, resulting in a droplet size of 152.3 nm, a polydispersity index (PDI) of 0.17, and a ζ-potential of −43.4 mV. Two types of films were prepared by incorporating 5 % and 10 % (v/v) SP/LEO NE into a curdlan (CD) and chitosan (CS) composite matrix, forming CD-CS-NE1 and CD-CS-NE2 films, respectively. The CD-CS-NE2 films possessed the highest tensile strength (14.5 MPa) and elongation at break (140 %). FTIR and molecular docking studies confirmed strong intermolecular interactions between the CD, CS, and NE components. The antibacterial activity of the NE-impregnated CD-CS films was significantly enhanced, with inhibition zones of 22 mm and 26 mm for Escherichia coli and Staphylococcus aureus, respectively, in the CD-CS-NE2 film. Growth curve and colony-forming unit (CFU) analyses further supported the superior antibacterial performance of the CD-CS-NE2 film. In mushroom storage tests, the CD-CS-NE2 film extended the shelf life of button mushrooms to 12 days and straw mushrooms to 4 days. Additionally, it reduced weight loss to 3 % and 4 % in button and straw mushrooms after 12 and 4 days, respectively. Mushrooms treated with CD-CS-NE2 film maintained higher firmness, with values of 18 N for button mushrooms and 6 N for straw mushrooms. The films effectively suppressed polyphenol oxidase (PPO) activity and browning. Overall, these findings suggest that SP/LEO NE-impregnated CD-CS films have strong potential for improving food preservation and reducing spoilage, particularly in fresh produce like mushrooms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Food Packaging and Shelf Life
Food Packaging and Shelf Life Agricultural and Biological Sciences-Food Science
CiteScore
14.00
自引率
8.80%
发文量
214
审稿时长
70 days
期刊介绍: Food packaging is crucial for preserving food integrity throughout the distribution chain. It safeguards against contamination by physical, chemical, and biological agents, ensuring the safety and quality of processed foods. The evolution of novel food packaging, including modified atmosphere and active packaging, has extended shelf life, enhancing convenience for consumers. Shelf life, the duration a perishable item remains suitable for sale, use, or consumption, is intricately linked with food packaging, emphasizing its role in maintaining product quality and safety.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信