{"title":"公交车和出租车乘客的贝叶斯多变量时空统计模型","authors":"Hui Luan , Shanqi Zhang , Xiao Fu","doi":"10.1016/j.jtrangeo.2024.104032","DOIUrl":null,"url":null,"abstract":"<div><div>Statistical modeling of ridership over both space and time provides valuable insights on transportation planning and policies. Existing spatiotemporal studies, however, predominantly focus on analyzing a single type rather than multiple types of ridership, thus cannot leverage the correlation between different types of ridership. This study proposes a Bayesian multivariate spatiotemporal statistical model to jointly analyze multiple ridership over time. Specifically, the model accounts for correlation between multiple ridership based on different assumptions of space-time interactions (i.e., departures from the main spatial and temporal patterns) between different types of ridership as well as if covariates are included in the model. Using hourly bus and taxi ridership in the city of Wuhu, China as an example, the case study indicates that accounting for the correlation between the space-time interactions of each ridership, beyond the correlation between the main spatial patterns of the two ridership, further improves the statistical inferences of ridership modeling. In addition, the proposed approach enables the detection of spatial and spatiotemporal hotspots of each ridership as well as bus-taxi ratio hotspots using posterior probabilities. It also supports visual inspections regarding how the inclusion of covariates explains these hotspots. The proposed approach not only advances multivariate spatiotemporal statistical modeling of ridership, but can also provide useful insights on space- and time-specific transport policies at a granular resolution.</div></div>","PeriodicalId":48413,"journal":{"name":"Journal of Transport Geography","volume":"121 ","pages":"Article 104032"},"PeriodicalIF":5.7000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian multivariate spatiotemporal statistical modeling of bus and taxi ridership\",\"authors\":\"Hui Luan , Shanqi Zhang , Xiao Fu\",\"doi\":\"10.1016/j.jtrangeo.2024.104032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Statistical modeling of ridership over both space and time provides valuable insights on transportation planning and policies. Existing spatiotemporal studies, however, predominantly focus on analyzing a single type rather than multiple types of ridership, thus cannot leverage the correlation between different types of ridership. This study proposes a Bayesian multivariate spatiotemporal statistical model to jointly analyze multiple ridership over time. Specifically, the model accounts for correlation between multiple ridership based on different assumptions of space-time interactions (i.e., departures from the main spatial and temporal patterns) between different types of ridership as well as if covariates are included in the model. Using hourly bus and taxi ridership in the city of Wuhu, China as an example, the case study indicates that accounting for the correlation between the space-time interactions of each ridership, beyond the correlation between the main spatial patterns of the two ridership, further improves the statistical inferences of ridership modeling. In addition, the proposed approach enables the detection of spatial and spatiotemporal hotspots of each ridership as well as bus-taxi ratio hotspots using posterior probabilities. It also supports visual inspections regarding how the inclusion of covariates explains these hotspots. The proposed approach not only advances multivariate spatiotemporal statistical modeling of ridership, but can also provide useful insights on space- and time-specific transport policies at a granular resolution.</div></div>\",\"PeriodicalId\":48413,\"journal\":{\"name\":\"Journal of Transport Geography\",\"volume\":\"121 \",\"pages\":\"Article 104032\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Transport Geography\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0966692324002412\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Transport Geography","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0966692324002412","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
Bayesian multivariate spatiotemporal statistical modeling of bus and taxi ridership
Statistical modeling of ridership over both space and time provides valuable insights on transportation planning and policies. Existing spatiotemporal studies, however, predominantly focus on analyzing a single type rather than multiple types of ridership, thus cannot leverage the correlation between different types of ridership. This study proposes a Bayesian multivariate spatiotemporal statistical model to jointly analyze multiple ridership over time. Specifically, the model accounts for correlation between multiple ridership based on different assumptions of space-time interactions (i.e., departures from the main spatial and temporal patterns) between different types of ridership as well as if covariates are included in the model. Using hourly bus and taxi ridership in the city of Wuhu, China as an example, the case study indicates that accounting for the correlation between the space-time interactions of each ridership, beyond the correlation between the main spatial patterns of the two ridership, further improves the statistical inferences of ridership modeling. In addition, the proposed approach enables the detection of spatial and spatiotemporal hotspots of each ridership as well as bus-taxi ratio hotspots using posterior probabilities. It also supports visual inspections regarding how the inclusion of covariates explains these hotspots. The proposed approach not only advances multivariate spatiotemporal statistical modeling of ridership, but can also provide useful insights on space- and time-specific transport policies at a granular resolution.
期刊介绍:
A major resurgence has occurred in transport geography in the wake of political and policy changes, huge transport infrastructure projects and responses to urban traffic congestion. The Journal of Transport Geography provides a central focus for developments in this rapidly expanding sub-discipline.